

Simulation of heat flux through multilayer structures

<u>*R. MacKenzie*¹, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins</u>

School of Electrical and Electronic Engineering, University of Nottingham University Park, Nottingham, NG7 2RD, United Kingdom

e-mail¹: eexrm1@nottingham.ac.uk

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

EMRS $Y \cdot \cdot Y$, Strasbourg

R. MacKenzie gratefully acknowledges the support of the **Engineering and Physical Sciences Research Council** (EPSRC), U.K.

We gratefully acknowledge the EC IST project **FAST ACCESS** (IST-004772).

www.fastaccessproject.eu

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

EMRS $Y \cdot \cdot Y$, Strasbourg

Presentation outline

- Heat flow through structures with multiple epitaxial layers
 - > Thermal conductivity of structures with multiple interfaces
 - > Thermal boundary resistance (TBR)
- \cdot Heat flow in 1.3 μ m dilute nitride edge-emitting lasers
 - Full electro-opto-thermal simulations
 - Introduction of TBR into the model
- \cdot Discussion of effect in other (dilute nitride) devices
- · Conclusions

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Thermal conductivity of superlattices

- GaAs/AlAs superlattices have a much lower thermal conductivity than one would predict from the bulk values alone.¹ (3x-10x lower)
 - Bulk GaAs/AlAs thermal conductivity = 58.4m⁻¹K⁻¹
 - Superlattice thermal conductivity = 5.0m⁻¹K⁻¹

- This effect is mainly due to phonon scattering/reflections at material interfaces
- TBR first observed by Kapitza (1941)²

- i = incident wave
- r = reflected wave
- t = transmitted wave

[1] W.S. Capinski *et. al.*, Phys. Rev. B Vol. 59, No. 12, p.8105 (1999).
[2] Collected papers of P.L. Kapitza, Vol. 2, Pergamon, Oxford, p. 581 (1965).

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

How does structure size affect the conductivity?

Consider a superlattice with a period L, where Λ is the average phonon mean free path (20-140nm)

One can distinguish two regimes:

- 1) $L \approx \Lambda$ A bulk thermal conductivity can be used between the interfaces by placing a thermal resistance at each boundary (TBR)
- 2) $L \ll \Lambda$ The situation becomes more complicated with phonons reflecting off multiple layers and gaps forming in the dispersion relations

> Edge-emitting lasers fall within the L $\approx \Lambda$ regime

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

How does TBR affect dilute nitride EELs?

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

What values of TBR should be used?

- Values of TBR are depend on:
 - > The acoustic mismatch of the materials
 - Masses Elastic constants -> Speed of sound in materials
 - Similar to Snell's law
 - > The quality of epitaxial interfaces
 - E.g. nitrogen plasma damage (dilute nitride devices)
 - Layer thickness
- Exhaustive experimental characterization of the effect is not complete
 Still no real consensus on microscopic models for TBR
- Diffuse mismatch model is used in this work
 - Has shown some agreement with experiment
 - A range of values will be used to examine the impact of TBR

Interface	TBR value (m²K/W)	Method	Device
GaAs/AlGaAs/InGaAsN	≈1.2x10 ⁻⁹	DMM	EEL
GaN/Si¹	7x10 ⁻⁸	experiment	HEMT
GaN/SiC ¹	1.2x10 ⁻⁷	experiment	HEMT
AIN/Si ¹	7-8x10 ⁻⁸	experiment	Thin film

- TBR is a known problem in nitride HEMTs
- TBR is less well studied in EELs

1) J. Kuzmík et.al., J. Appl. Phys. Vol. 101, 054508 (2007).

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Device simulator

Electro-thermal Model Bipolar 2D Drift Diffusion (DD) model (0th and 1st moments of the Boltzmann Transport Equation (BTE)) Poisson's equation QW capture/escape equations for each QW 2D lattice heat equation Heat sources derived from 2nd moment of BTE

Optical Model

- Photon rate equation
- Valance band structure calculated using 4x4 band k.p
- Band anti-crossing model for the conduction band
- Fermi's Golden rule used to calculate stimulated/spontaneous emission rates

All equations solved using Newton's method

Discretization scheme for inclusion of TBR

• The lattice heat equation is commonly solved in thermal models:

$$\rho_L C_L \frac{\partial T}{\partial t} = \nabla \cdot \left(k \nabla T \right) + H$$

 However, because of abrupt thermal resistances at epitaxial interfaces one must solve:

(1)
$$\left(\frac{\partial T}{\partial x}\right)_{r+1/2}^{3}k_{1} = k_{2}\left(\frac{\partial T}{\partial x}\right)_{r+1/2}^{4}$$

 Introduce a step in temperature proportional to the boundary resistance:

(2)
$$T_{r+1/2}^{(3)} - T_{r+1/2}^{(4)} = Rk_2 \left(\frac{\partial T}{\partial x}\right)_{r+1/2}^3$$

 Adapted from a scheme to model discontinuities Quasi-TE modes of semiconductor waveguides¹

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Thermal profile with and with out TBR

- Up to half a degree difference in peak temperature of device
- Small temperature differences are important for accurate models
- R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

EMRS 2007, Strasbourg

15KV X20,000 6mm

Difference between simulations with and without TBR

- Joule heating and free carrier absorption in ridge
 - High heat flux out of ridge
 - > TBR has a large effect at bottom of ridge

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Change in QW temperature due to TBR vs. injection current

• The interfaces introduce a small increase in QW temperature

Impact of TBR on QW temperature

Temperature of QW for various TBR values

Difference in QW temperature due to TBR

- A small increase in QW temperature can be seen
 - Although small, the effect may need to be included in some cases

Impact of TBR on output power

L-I curves for isothermal, ordinary thermal and thermal with TBR

Difference in L-I curves compared to ordinary thermal case

- x1,x2,x4 and x8 times the value predicted by TBR
- A small decrease in power due to the temperature increase can be seen

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Conclusions

- TBR has been shown to increase the predicted temperature of a $1.3 \mu m$ dilute nitride EEL by up to 0.5K
- A small decrease in optical power is also predicted
- Impact of TBR increased by
 - More interfaces
 - Materials with large acoustic mismatch (GaN/SiC HFETs)
 - Interface defects (nitrogen plasma damage)
 - Increased heat flux
- Need for more *more accurate* TBR values
 - > Ideally from experiment
 - Better numerical models for calculation of TBR are also needed
- For the first time the impact of TBR has been considered within a full electro-optical-thermal laser simulation tool

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Other devices structures where TBR has an impact

- Structures with relatively thick layers (L $\approx \Lambda$)
 - Long wavelength VCSELs mirrors
 - e.g. 1.3µm structures for dilute nitride VCSELs
 - > 30-60 periods
 - Possible increase of up to 5K
 - Carrier heat flux reduces impact of TBR

· Devices with large acoustic mismatch

- GaN/sapphire, GaN/SiC and GaN/AIN
 - > Heterostructure field-effect transistors (HFETs)
- Structures with layer thicknesses that are much smaller than the phonon m.p.f. (L $\ll \Lambda$)
 - Short wavelength VCSELs
 - Quantum cascade lasers
 - > High temperature sensitivity