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Presentation outlinePresentation outline

Introduction
 Motivation

Experimental Method
 Device description
 Experimental system
 Extraction of gain - Cassidy's method
 Numerical estimation of experimental error

Results
 Net gain, cavity loss and modal gain
 Extract quasi-Fermi level separation
 T0 (high/low temperature)
 Full width half maxima

Comparison with InP-based devices
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Ga0.613In0.387NAs  with 1.2% nitrogen

Front facet reflectivity:

Back facet reflectivity:

QW material:

Ridge width:

Front facet output power:

Number of QWs:

Device structureDevice structure

2

Wr = 3.2 µm

Rb = 0.7

Pout = 10 – 15 mW

Rf = 0.3

Coated

R = 0.32
Uncoated



R. MacKenzie, J.J. Lim, S. Bull, S. Chao, S. Sujecki, E.C. Larkins et. al. E-MRS 2007, Strasbourg

Devices measuredDevices measured

Coated devices

  250µm, 300µm, 500µm and 750µm

Uncoated devices

  500µm, 1000µm, 2000µm

Measurements as a function of temperature

 300K, 320K, 340K, 360K and 380K

Measurements as a function of current
 10 bias currents per temperature

 From far below threshold to slightly above
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Experimental systemExperimental system

 ASE spectra measured from the front facet

 Fully automated system

 Optical fibre automatically aligned to laser

 Temperature range 25-110OC

 Examined cavity integrity1

1) P.J. Bream, et.al. Appl. Phys. Lett. Vol. 86, 061104 (2005).
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Extraction the gain using Cassidy's methodExtraction the gain using Cassidy's method

 Cassidy's method

 Calculated using mode sum

 Better noise immunity by a factor of

 Less sensitive to spectral resolution
of measurement system

 Hakki-Paoli method
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Accuracy of the gain measurementsAccuracy of the gain measurements

 Spectra convolved with an approximation of 
the instrument response

 Estimated errors

 Worst case for modal gain 1.0cm-1

 Worst case net gain/loss 1.6cm-1

 Hakki-Paoli gave larger errors than 
Cassidy’s method by ≈ 1cm-1

 Band structure calculated using 4x4 band 
k.p model for the valence band and band 
anti-crossing model for the conduction band

 The spontaneous and stimulated emission 
rates were calculated using Fermi's golden 
rule

 Fox-Li iteration scheme was used to model 
the cavity resonances
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Net gain spectra as a function of Net gain spectra as a function of 
temperaturetemperature

 Decrease of peak gain of 0.26 cm-1/K

 Comparable to InP-based devices 0.30 
cm-1/K

 The gain red shifts at a rate of 0.56nm/K

 This is comparable to the 0.62nm/K for 
In-P based devices1

 Mostly due to QW band gap shrinkage

Variation of gain spectra at a 
constant current of 20mA with 
increasing temperature.

meV/K.T/E Lg 470≈∆∆

meV/K.T/E Lg 570≈∆∆

1) D. A. Ackerman IEEE J. Sel. Top. Q. Electron. , Vol. I , No. 2. 1995 p.250

1

This work

InP-based

L=500µm
Uncoated facet
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Increasing bias

Modal gain spectra as a function of biasModal gain spectra as a function of bias
- extraction of losses- extraction of losses

The difference between the low energy 
tail of the gain spectra and the zero point 
gives the cavity loss

For this work, we calculate
 A loss of 8± 1.6cm-1  (low)
 Loss appears to be temperature 

/carrier density independent

Typical InP-based devices
 Loss 7-20cm-1  

 Temperature/carrier density 
dependant

The peak gain blue shifts with increasing 
current at a rate of 1.17nm/mA

  band filling effects

Increase in FWHM of 2.4nm/mA
 band filling effects

1000µm uncoated device at 300K 
measured from 25-35mA
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Quasi-Fermi level separation vs. Injection Quasi-Fermi level separation vs. Injection 
current current 

Extracted Quasi-Fermi level  separation 
verses injection current.

 Shift of threshold with temperature

 300-360K
 T0=282K (High)
 0.10mA/K

 360-380K
 T0=113K (Still high)
 0.26mA/K

 Typical InP-based devices
 T0=70K

 Second characteristic temperatures not 
observed in longer cavities

 Function of carrier density and temperature

 Most probable cause
 Thermionic emission of holes escaping 

from QW
 Auger recombination

L=500µm
Uncoated facet
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 A kink can be seen in the curves 
at higher temperatures a

 Not observed in longer cavities

 Simulations with our calibrated 
model suggest this is due to 
high rates of Auger 
recombination in the QW at 
high carrier densities

 Lower Fermi-level separation at 
higher temperatures is due to 
band gap shrinkage

Quasi-Fermi level separation vs. Injection Quasi-Fermi level separation vs. Injection 
currentcurrent

Extracted Quasi-Fermi level  separation 
verses injection current.

L=500µm
Uncoated facet
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Spread of FWHM with current and Spread of FWHM with current and 
temperaturetemperature

 This work
 Maximum width of spectra 30-45nm
 Increase in the FWHM of the spectra of 

0.35nm/K

 InP-based materials1

 Maximum width of spectra 51-70nm
 0.31nm/K

 Inhomogeneous pumping of larger 
number of QWs.

Spectral width of gain as a function of 
quasi-Fermi level separation and 
temperature

1) D. A. Ackerman IEEE J. Sel. Top. Q. Electron. , Vol. I , No. 2. 1995 p.250
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Peak gain wavelength as a function of Peak gain wavelength as a function of 
injection current densityinjection current density

 A red shift with increasing 
temperature can be observed

 300-340K dλ/dT=0.41nm/K

 340-380K dλ/dT=0.60nm/K

 Average dλ/dT=0.51nm/K

 InP-based systems 0.3-0.5nm/K

 A blue shift with increasing 
current density can be observed

 This work
 11pm/A/cm2

 InP-based
 13pm/A/cm2 

Shift of peak gain with current density and 
temperature for all measured devices

0.735nm/K

0.468nm/K

0.405nm/K

0.414nm/K
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  A Low cavity loss of 8cm-1± 1.6cm-1 has been determined
 InP-based devices 7-20cm-1  

 Comparatively small FWHM (30-45nm) - low number of QWs
 InGaAsP  QW (51-70nm)

  A small value of red shift with temperature  0.51nm/K has been observed
 This is comparable to the 0.62nm/K for In-P based devices

 High T0=113K-282K
 InP-based devices T0~70K

 Magnitude of gain decreases at 0.26 cm-1/K
 Compared to 0.30 cm-1/K for InGaAsP 

 At high current densities device behaviour changes (but still good).
 Probably due to hole leakage current/Auger processes

 Dilute nitrides are a clear competitor to 1.3µ m InP-based devices
 

ConclusionsConclusions
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