The impact of hot-phonons on the performance of 1.3µm dilute nitride edge-emitting quantum well lasers

<u>Roderick MacKenzie^{1*}</u>, J. J. Lim¹, A.J. Kent², S. Sujecki¹ and E. C. Larkins¹

¹ School of Electrical and Electronic Engineering The University of Nottingham, University Park, Nottingham, NG7 2RD, U.K ² School of Physics and Astronomy The University of Nottingham, University Park, Nottingham, NG7 2RD, U.K

Accurate thermal modelling of optoelectronic devices

• A state-of-the-art electro-optical-thermal device simulator to is extended to model o Non-equilibrium LO-phonons generated via carrier relaxation in the QW o Independent electron/hole temperatures o Material gain dependent upon both electron and hole temperatures

- The impact of the non-equilibrium LO-phonon population on o Optical and thermal transient response o Light-current (LI) characteristics of the device are investigated
- Phonon bottle necks resulting in a LO-phonon temperature 7K higher than the lattice temperature were observed
 - o A corresponding reduction in optical power of up to 1mW was observed

Figure 1. An example of a laser diode designed for use in severe

• It was found particularly important to include hot phonon effects in dilute nitride devices due to the large conduction band offset

The Device

- Double quantum well GaInNAs laser diode
 - Optimised for uncooled 10Gb/s transmission at 1.3µm
 - Operates at heat sink temperatures of 110°C)
 - Low cost GaAs substrate
 - Good temperature stability $T_0 \approx 273 \text{K}$
 - 300µm cavity, uncoated facets and a ridge waveguide (RW) width of 3.2µm
 - Access market applications
- More details about this devices can be found elsewhere (Gustavsson et. al. 2006 Electron. Lett. 42 925

The University of	
Nottinghar	n

	Т	Au]	
Et als a al	E	p-GaAs	0.10µm	
trench	.3µr	Al _{₀.2} Ga _{₀.8} As-	0.20µm	
uenci	-	p-Al _{₀.5} Ga _{₀.5} As	1.00µm	
	T	- Al _{₀.2} Ga _{₀.8} As	0.16µm	
	GaAs			
QW	Ga。	. ₆₁₃ In _{0.387} N _{0.012} As	7nm	_
GaAs			20nm	_
QW	Ga。	. ₆₁₃ In _{0.387} N _{0.012} As	7nm	
GaAs			20nm	_
Al ₀₂ Ga ₀₈ As-			0.16µm	
n-AlೄGaೄAs			1.00µm	
-Al ₀₂ Ga ₀₈ As			0.20µm	_
		n-GaAs	_	_

Figure 2. The epitaxy and structure of the device simulated

⁽Image courtesy of Chalmers University, Sweder

The theoretical hot-phonon model

• Carrier are captured in to the QW from the bulk states heating the confined electron/hole populations. (Carriers also heated via Free Carrier Absorption)

• Carrier gasses relax via dark recombination processes, LO-phonon, acoustic phonon and photon emission.

- Carriers predominantly relax via the emission of LO-phonons
- Due to the finite LO-phonon decay time an excess of LO-phonons can form around the QW
- The hot-phonon population heats the carriers, thereby decreasing the optical gain
- The non-equilibrium LO-phonon population relaxes to the lattice temperature via acoustic phonon emission.
- Heat propagates out of the device through the lattice
- Electrons/holes have independent quasi-Fermi levels and temperatures

The Electrical Model

- Bipolar 1D 2D Drift Diffusion (DD) model (0th and 1st moments of the Boltzmann Transport Equation (BTE))
- Poisson's equation
- QW capture/escape equations for each QW
- 2D lattice heat equation solved in external solver

The Optical Model

- Photon rate equation for each QWs
- 2D mode solver

Figure 4. Schematic diagram of the energy pathways within the model

Thermally dependent

material parameters

Device geometry

Guess initial

photon density

Steady state results

Thermal profile

- A a typical simulated thermal profile of the device is shown in figure 6
- •Free Carrier Absorption and Joule heating •Heat up the ridge
- The device can operate at heat sink temperatures up to 110°C

Figure 6. A typical device thermal profile, showing the ridge, etched trench and

OW structure.

Hot carrier populations

• A thermal profile, corresponding to a front facet power of 12mW is plotted in figure 7, including electron, hole, nonequilibrium LO phonon and lattice temperatures.

- Under the ridge, the phonon bottleneck can be seen to elevate the carrier temperature by around 7K.
- The bottleneck corresponds to high carrier injection rates.
- Further away from the ridge, where the injection current is lower, the carrier/LO-phonon and lattice temperatures are the same.

Figure 7, Cross section of the electron, hole, LO-phonon and lattice temperature with in the device.

Light-Current Characteristics

• Gain and spontaneous emission calculated using 4x4 band *k.p* solver

The Thermal Model

Lattice heat equation

 $C_{L}\frac{dT_{L}}{dt} = \nabla k_{L}\nabla T + H_{bulk} + \left(U^{LO}\left(T_{LO}\right) - U^{LO}\left(T_{L}\right)\right) / \tau_{LO-a} + \left(U^{e}\left(T_{e}\right) - U^{e}\left(T_{L}\right)\right) / \tau_{AC-e} + \left(U^{e}\left(T_{e}\right) - U^{e}\left(T_{E}\right)\right) / \tau_{AC-e} + \left(U^{e}\left(T_{E}\right) - U^{e}\left(T_{E}\right) - U^{e}\left(T_{E}\right$ $\left(U^{h} \left(T_{h} \right) - U^{h} \left(T_{L} \right) \right) / \tau_{AC-h}$

Electron energy balance equation

 $\frac{dU_{e}}{dL} = H_{cap}^{e} + H_{SRH}^{e} + H_{Auger}^{e} + H_{J}^{e} - \overline{E}_{e}^{stim} R_{Stim} - \overline{E}_{e}^{spon} R_{Spon} - (U^{e}(T_{e}) - U^{e}(T_{LO}))/\tau_{LO-e}$ $-(U^{e}(T_{h}) - U^{e}(T_{h}))/\tau_{AC-e} - (U^{e}(T_{e}) - U^{e}(T_{h}))/\tau_{e-h} + (U^{h}(T_{h}) - U^{h}(T_{e}))/\tau_{e-h}$ Hole energy balance equation

 $\frac{dU_{h}}{dL} = H_{cap}^{h} + H_{SRH}^{h} + H_{Auger}^{h} + H_{J}^{e} - \overline{E}_{h}^{stim} R_{Stim} - \overline{E}_{h}^{spon} R_{Spon} - (U^{h}(T_{h}) - U^{h}(T_{LO}))/\tau_{LO-h}$ $-(U^{h}(T_{h})-U^{h}(T_{h}))/\tau_{AC-h}+(U^{e}(T_{e})-U^{e}(T_{h}))/\tau_{e-h}-(U^{h}(T_{h})-U^{h}(T_{e}))/\tau_{e-h}$

LO-phonon energy balance equation

$$\frac{dU_{LO}}{dt} = (U^{e}(T_{e}) - U^{e}(T_{LO}))/\tau_{LO-e} + (U^{h}(T_{h}) - U^{h}(T_{LO}))/\tau_{LO-h} - (U^{LO}(T_{LO}) - U^{LO}(T_{L}))/\tau_{LO-a}$$

Carrier energy density

Average energy of lasing carriers

 $\overline{E}_{e/h}^{stim}(\hbar\omega) = \frac{\int_{0}^{\infty} \sum_{N} R_{stim}^{n}(\hbar\omega, E, T_{e}, T_{h}) L(\hbar\omega - E) E dE}{\sum_{n}^{\infty} \sum_{N} R_{stim}^{n}(\hbar\omega, E, T_{e}, T_{h}) L(\hbar\omega - E) E dE}$ $\int_{-\infty}^{\infty} \sum R^{n}_{stim}(\hbar \omega, E, T_{e}, T_{h}) L(\hbar \omega - E) dE$

LO-phonon energy density Average energy of spontaneous emission

$$\overline{E}_{e/h}^{spon} = \frac{\int_{0}^{\infty} \sum_{N} R_{Spon} (E_{eh}) E dE_{eh}}{\int_{0}^{\infty} \sum_{N} R_{Spon} (E_{eh}) dE_{eh}}$$

$$U^{LO}(T) = \frac{\hbar \omega_{LO}}{\left(2\pi\right)^2} \int_{q_{xy}}^{q_{xy}} k_{xy} N(T) dk_{xy} \int_{-q_z}^{q_z} dq_z \quad \text{where,} \quad N(T) = \frac{1}{e^{\hbar \omega/kT} - 1}$$

This set of non-linear equations is solved using Newton's method.

Figure 5. A flow diagram of the simulator used optimize the device

Definitions

Non-equilibrium LO phonon temperature	T_{LO}
Electron temperature	T_{e}
Hole temperature	T_{h}
lattice temperature	T_{L}
Capture heating	$\mathrm{H}_{\mathrm{CAP}}$
Free carrier absorption heating	$\mathrm{H}_{\mathrm{FCA}}$
Lateral joule heating	H_{J}
Stimulated emission rate	R _{Stim}
Spontaneous emission rate	R_{Spon}
Acoustic phonon relaxation time	$t_{AC-e/h}$
Carrier relaxation time	t_{LO-e}
LO phonon relaxation time	t _{LO-a}
QW carrier energy densities	$U_{e/h}$
Average lasing energy	$\mathrm{E}_{\mathrm{stim}}$
Average spontaneous emission energy	$\mathrm{E}_{\mathrm{spon}}$

•A set of L-I curves for different phonon lifetimes is shown in figure 8.

•At high injection currents, the non-equilibrium LOphonon temperature exceeds the lattice temperature by up to 15K

oThis causes a reduction of up to 1mW in optical power.

•At lower injection currents, a smaller impact on the L-I curve is observed.

Impact of heat sink temperature

•A super-linear increase in the LO-phonon temperature relative to the lattice temperature can be seen at heatsink temperatures above 360K.

• At lower heatsink temperatures (300-360K), the reduction in LO-phonon decay time as a function of temperature results in a very similar bottleneck for all temperatures.

• Experimentally, the device shows a decrease in performance for heatsink temperatures above 360K.

oThis could be partially attributed to the increasing impact of the LO-phonon bottleneck.

Figure 9, Phonon bottle neck as a function of Optical power for a range of heat sink temperatures

Conclusion

• The phonon bottleneck is most important under the ridge, where the injection current is largest.

Time domain results

• At heatsink temperatures above 360K, the impact of the phonon bottleneck steadily increases.

• At high injection currents, the phonon bottleneck is seen to elevate the carrier temperature by up to 15K, with a corresponding decrease in optical power of up to 1mW.

• Modulation of the LO-phonon population is even observed under high speed modulation.

Figure 11. Optical image one of the device, the stripe of the ridge waveguide can be seen in the image

• The impact of hot phonons in dilute nitride devices is particularly large due to the large conduction band offset • In order to accurately model the modulation response and thermal rollover in dilute nitride devices, hot phonon effects must be included in device models.

• A 1D time domain simulation at a bit rate of 10Gb/s is shown in figure 10.

• Inclusion of the non-equilibrium LO-phonon population

• Elevates the carrier temperature with respect to the lattice temperature

- Reduces the predicted peak optical power
- Delays the peak of the optical pulse.
- $T_{1} = 339 K$

• The non-equilibrium LO-phonon population increases its temperature by 3K within the width of the modulating pulse.

Figure 10, Time domain response to an input pulse

EPSRC Engineering and Physical Sciences Research Council

E-mail: eexrm1@nottingham.ac.uk

world-changing research rom The University of Nottingham

The authors gratefully acknowledge the support of the EPSRC and the European Commission through the IST projects WWW.BRIGHT.EU and FAST ACCESS