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* A state-of-the-art electro-optical-thermal device simulator to is extended to model
o0 Non-equilibrium LO-phonons generated via carrier relaxation in the QW Gahs

o Independent electron/hole temperatures « Optimised for uncooled 10Gb/s transmission at 1.3um Gars
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0 Material gain dependent upon both electron and hole temperatures =
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* LLow cost GaAs substrate -Gahs

* Double quantum well GaInNAs laser diode

 The impact of the non-equilibrium LO-phonon population on
o Optical and thermal transient response
o Light-current (LI) characteristics of the device are investigated « Good temperature stability T,= 273K

Figure 2. The epitaxy and structure of the device simulated

 Phonon bottle necks resulting in a LO-phonon temperature 7K higher than the lattice * 300pm cavity, uncoated facets and a ridge waveguide

temperature were observed (RW) width of 3.2pum

0 A corresponding reduction in optical power of up to 1ImW was observed + Access market applications

| - | » It was found particularly important to include hot phonon effects in dilute nitride devices due to  More details about this devices can be found elsewhere
o onmental coniians stch as o Mareoned forusensevere  tha Jarge conduction band offset (Gustavsson et. al. 2006 Electron. Lett. 42 925 | | | |
Figure 3. An SEM image of the ridge wave guide structure

(Image courtesy of NASA) (Image courtesy of Chalmers University, Sweden)

The theoretical hot-phonon model
e Carrier are captured in to the QW from the bulk states heating the confined Steady State resu |tS

electron/hole populations. (Carriers also heated via Free Carrier Absorption)

» Carrier gasses relax via dark recombination processes, LO-phonon, R [ ———
acoustic phonon and photon emission. population

» Carriers predominantly relax via the emission of LO-phonons Y 3 * A a typical simulated thermal profile of the device is remperek

* Due to the finite LO-phonon decay time an excess of LO-phonons can shown in figure 6
form around the QW

* The hot-phonon population heats the carriers, thereby decreasing the
optical gain Pred

 The non-equilibrium LO-phonon population relaxes to the lattice Hole Acoustic phonon scattering __ |  The device can onerate at heat sink femberatires un o
temperature via acoustic phonon emission. population p P p

. . 110°C
 Heat propagates out of the device through the lattice | -
. . . Figure 4. Schematic diagram of the energy pathways
* Electrons/holes have independent quasi-Fermi levels and temperatures within the model.
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Figure 6. A typical device thermal profile, showing the ridge, etched trench and
QW structure.

Hot carrier populations

* A thermal profile, corresponding to a front facet power of
12mW is plotted in figure 7, including electron, hole, non-

Th e nNnume ri Cal mo d e I equilibrium LO phonon and lattice temperatures.

The Electrical Model » Under the ridge, the phonon bottleneck can be seen to

* Bipolar 1D - 2D Dirift Diffusion (DD) model (0™ and 1% moments of the Thermally dependent elevate the carrier temperature by around 7K.
Boltzmann Transport Equation (BTE)) TIEMETEEL [FEIEIME 2

* Poisson’s equation !

* QW capture/escape equations for each QW Device geometry e Further away from the ridge, where the injection current is
e 2D lattice heat equation solved in external solver lower, the carrier/LO-phonon and lattice temperatures are the

sdame. Position (um)
The Optical Model '
Figure 7, Cross section of the electron, hole, LO-phonon and lattice temperature

* Photon rate equation for each QWs pﬁg@f}ijg‘éﬁ{y with in the device.

* 2D mode solver Light-Current Characteristics
* Gain and spontaneous emission calculated using 4x4 band k.p solver

Temperature K

 The bottleneck corresponds to high carrier injection rates.
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Electro-opto solver [* *A set of L-I curves for different phonon lifetimes is
The Thermal Model shown in figure 8.
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Lattice heat equation e P re P *At high injection currents, the non-equilibrium LO-

ar : phonon temperature exceeds the lattice temperature by
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dr ap Auger ' B e Im pact Of heat Si N k tem peratu re Phonon bottle neck is also plotted.
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o A super-linear increase in the LO-phonon temperature
—_ apture heatin . . .

” ’ ’ relative to the lattice temperature can be seen at heatsink
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oThis could be partially attributed to the increasing 8 10 12 14 16 18

. Optical P W
i - SR : : impact of the LO-phonon bottleneck. Prical Power (mW)
This set of non-linear equations is solved using Newton’s method. Figure 9, Phonon bottle neck as a function of Optical power for a range of heat

sink temperatures.

Average spontaneous emission energy

Conclusion Time domain results

» The phonon bottleneck is most important under the ridge, where the injection current is 199
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« A 1D time domain simulation at a bit rate of 10Gb/s is
shown in figure 10.
1.4

» At heatsink temperatures above 360K, the impact of the phonon bottleneck steadil R ‘ . : ST D T
_ p p P y B N Inclusion of the non-equilibrium LO-phonon a— ., == . | 35
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» At high injection currents, the phonon bottleneck is seen to elevate the carrier i » Elevates the carrier temperature with respect to the me (ns)
temperature by up to 15K, with a corresponding decrease in optical power of up to 1mW. e lattice temperature

* Reduces the predicted peak optical power
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* Modulation of the L.O-phonon population is even observed under high speed | o | |
. Figure 11. Optical image one of the device, the stripe of .
modulation. the ridge waveguide can be seen in the image * Delays the peak of the optical pulse.

. T,=339K

« The impact of hot phonons in dilute nitride devices is particularly large due to the large conduction band offset » The non-equilibrium LO-phonon population increases Time (ns)

* In order to accurately model the modulation response and thermal rollover in dilute nitride devices, hot phonon gfotflﬁ?iﬁﬁagt%ﬁg 3K within the width of the Figure 10, Time domain response to an input pulse

effects must be included in device models.
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