
Thermal boundary resistance Chapter 8
within optoelectronic devices

8.1 Introduction

The  prediction  of  the  thermal  properties  of  modern  semiconductor  devices  at  the

design stage is essential to obtain efficient heat management, ensure long lifetimes,

high power operation and high reliability.  With the ever increasing need for higher

power devices, higher heat dissipation densities are inescapable. Indeed, it is common

for heating rates as high as 5x1015Wm-3 to be present in modern devices. A great deal

of attention has been paid to the derivation of the heat generation terms used in device

models [1-8]. However, less attention has been paid to the propagation of heat within

the  device  itself.  In  particular,  the  thermal  resistance  associated  with  epitaxial

interfaces is commonly neglected.  As heat flows across an epitaxial interface, a small,

but measurable, temperature step is produced due to phonon reflection.  The reflection

occurs  because  of  the  acoustic  mismatch  of  the  two materials  (analogous  to  total

internal reflection in optics) and the scattering of phonons off of interface defects.

This temperature discontinuity can be represented as a  thermal boundary resistance

(TBR).    The thermal  boundary  resistance  is  called  Kapitza [9]  resistance  and is

defined as “the ratio of the temperature discontinuity at the interfaces to the power per

unit area flowing across it”  [10].  This can be written as

q R= T , (8.1)

where  q is the heat flux,  RB is the TBR and  T is the temperature drop across the
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interface [3]. 

It has recently been shown both numerically [11] and experimentally [12],[13], that

the  effects  of  acoustic  mismatch  can  significantly  reduce heat  propagation  within

devices [11]. Indeed, in GaAs/AlAs superlattices at room temperature, a reduction in

the  thermal  conductivity  of  up  to  an  order  of  magnitude  from the  averaged bulk

thermal  conductivities  has  been  observed  [13].  The  scattering  of  phonons  off  of

interface defects is of particular interest in dilute nitride devices due to the increased

interface roughness arising from the incorporation of nitrogen [14]. If one considers

the possibility  of a TBR at every epitaxial  interface,  then the validity  of applying

Fourier's  heat  equation  directly  to  these  state-of-the-art  optoelectronic  should  be

examined more carefully [11].

8.2 Chapter outline

In this chapter, the concept of thermal boundary resistance is introduced.  Theoretical

models for the calculation of the TBR value are examined and the state of current

knowledge is assessed.  A finite difference scheme is developed, which is capable of

accurately  introducing  a  TBR  and  a  step-wise  gradient  change  in  temperature  at

material interfaces in a device simulator. The impact of including TBR on structures

with  tens  of  epitaxial  layers  (e.g.  VCSELs) is  then  examined.   The discretisation

scheme is  then introduced into full  2D electro-optical-thermal simulations  of edge

emitting devices.  Both a low power 1.3m dilute nitride laser and a  980nm high-

power  ridge  waveguide  (RW) laser  are  examined.  Finally,  the  interaction  of  the
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carrier heat fluxes and the lattice heat fluxes passing through a TBR are examined.

8.3 The magnitude of TBR

There are three main factors which affect the magnitude of the TBR at an interface.

These are the acoustic mismatch of the material interfaces, the quality of the material

interface and the average layer thickness, L, relative to the phonon mean free path.  If

the materials that make up an interface are mechanically very similar in terms of their

elastic constants and densities, then the reflection of phonons incident on the interface

will  be small.   This  is  analogous to  impedance matching of transmission  lines  in

electro-magnetics [15].  An example of such a material system is GaAs/AlAs.  For

materials  which  are  mechanically  dissimilar,  phonons  will  have  a  far  higher

probability of reflection at the interface.  In this case, a higher TBR will be associated

with the interface.  An example of such a material system is GaN/sapphire.

At high temperatures,  where high  frequency phonons dominate the heat  transport,

interface scattering is very probable.  Imperfections at the interface have been shown

to  increase the thermal  boundary resistance.   Indeed,  it  has  been shown [16] that

interface roughness of only a few monolayers thickness can dramatically increase the

predicted value of TBR.

The average layer thickness,  L, and the average phonon mean free path,    are also

important factors [17].  In general, there are two regimes of TBR.  In devices where

the layer thicknesses are either comparable to the phonon mean free path (L or
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bigger  than  it,  (L>> the  devices  can  be  modelled  using  the  bulk  thermal

conductivities for each epitaxial layer together with a TBR at each epitaxial interface.

For devices where the average phonon mean free path is greater than several layer

thicknesses, L<<, the phonon behaviour becomes more complex with the possibility

of a phonon reflection from multiple layers before scattering.  This alters the phonon

density of states, which severely reduces the thermal conductivity [17]. The average

mean free path in GaAs/AlGaAs is ~20nm [17,18]. Thus, the majority of standard

edge-emitting  lasers  generally  fall  within  the  L regime,  but  QCLs  and  some

VCSEL mirrors do not.

8.3.1 Models for the calculation of TBR

There are three main approaches to calculating the value of the TBR.  The first model

to be described in the literature was the Acoustic Mismatch Model (AMM) by Little

in 1959 [19,20].  In this model, it is assumed that phonons can be described by plane

waves interacting with a defect free interface.  Continuum mechanics is used to model

the  interface  and  calculate  the  phonon  transmission  probabilities.   At  low

temperatures, this method has had some success [21].  The discrepancies between the

AMM  and  experiment  were  often  put  down  to  the  failure  to  include  interface

scattering. The Diffuse Mismatch Model (DMM) model was proposed by Swartz [10]

to account for interface scattering.  In this model, it is assumed that all phonons scatter

at the interface.  The DMM has shown more success at higher temperatures  [10].

DMM only assumes elastic scattering at the interface, with no mode conversion of
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phonons.   Both  the DMM and the  AMM make no allowance for  the  size of  the

structure, i.e. they assume that there are no interactions with other interfaces [20].

The third method of calculating TBR is modelling the interface as a series of atoms

connected by springs.   Phonon wave packets are then propagated along the lattice

across the interface and the results of the simulation examined. This is the molecular

dynamics approach [20]. Other models have been developed which include electron-

phonon  interactions  at  the  interface,  but  there  is  little  experimental  evidence  to

support them [20,22,23].

In  conclusion,  there  have  been  various  proposals  made  as  to  suitable  models  to

calculate  TBR,  some  of  which  agree  with  experiment  under  certain  conditions.

However, there is no consensus on a model which can reliably predict the value of

TBR at an interface.  This is due mainly to the difficulty  of making accurate and

reproducible measurements and the inability to change one variable at a time.

8.3.2 The Acoustic Mismatch Model (AMM)

It  is  the aim of the AMM and DMM to calculate  the heat  flux across  a material

interface whilst  taking phonon reflection  into  account.   The general  method  is  to

calculate  the  gross  phonon  flux  across  the  interface  from either  side.   Then,  by

subtracting and taking into account reflections, a value for the thermal resistance of

the TBR can be arrived at.   The first step is to calculate the phonon population at the

interface.  The 3D phonon density of states is given by
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D  d =
4

c2 3
2 d  , (8.2)

where  is the angular frequency of the phonon and c its velocity.  A linear dispersion

relation is assumed, i.e.  =ck, where  k is the wavevector. The function  N(,T)  can

then  be  defined  as  the  product  of  the  phonon  density  of  states  and  the  phonon

occupation probability

N  ,T =D  f BE  ,T  , (8.3)

where

f BE =
1

eℏ /kT−1
(8.4)

is given by the Bose-Einstein distribution.  The phonon flux normal to the interface is

then calculated following [19].  For side 1 of the interface, c1cos  is the component of

phonon  velocity  normal  to  the  interface.   It  is  assumed  that  the  phonons  are

thermalised  and  scatter  in  all  directions  equally.   The  area  element  in  spherical

coordinates is given by,

d A=r 2 dsin  d  . (8.5)

Therefore the number of phonons of angular frequency  at temperature T incident on

an area dA between angle 1 and 1+d1 per unit time is given by [19],

∫
0

2 

N 1 ,T c1 cos1 sin1 d d 1 dA

∫
0

2 

∫
0



sin1 d d 1

=
1
2

N 1 ,T c1 cos1 sin1 d 1 dA , (8.6)

where  ∫
0

2

∫
0



sin 1 d d 1 is  a  normalising  area.   The  net  heat  flow  across  the
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interface is therefore given as

Q=
1
2
∫∫∫ N 1ℏ 11c1 cos1sin 1d 1 d 1 dA−

1
2
∫∫∫ N 2 ℏ2 2 c2 cos2 sin 2 d2 d 2 dA

, (8.7)

where   is the transition coefficient.  The integral can be rearranged and simplified to

Q=
A
2∫0


2

1 1sin 1d 1∫
0

D

N 1ℏd 1−

A
2
∫∫

0


2

2 2 sin 2 d 2∫
0

D

N 2 ℏd 2
. (8.8)

Rewriting gives,

Q=
A
2
1∫

0

D

N 1 ℏd 1−
A
2
2∫

0

D

N 2ℏd 2 , (8.9)

where,

=1=2=∫
0


2

1 1sin1d 1=∫
0


2

 22sin 2 d2
. (8.10)

The integrals in equation 8.9 represent the energy density within one phonon mode of

the materials  on either side of the interface.   If it  is  assumed, as in [19],  that  the

transition probability is the same on both sides of the interface, equation 8.10 may

therefore be written as

Q=
A
2
 ∫

0

D

N 1ℏd 1−∫
0

D

N 2ℏd 2  . (8.11)

Evaluation of 8.11 results in

Q=
2 k 4  A

h3 c1
2 [T 1

4 f T1−T 2
4 f T 2] , (8.12)
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where

=∫
0


2

1sin 1cos1d 1
, (8.13)

f T =∫
0

zd

z3

ez−1
dz , (8.14)

z=
ℏ
kT

 and (8.15)

zD=
ℏD

kT
. (8.16)

The Debye frequency is taken as D and zD is often taken to be  as in  [19].  This is

acceptable  at  low  temperatures  because  zD≪1,  but  it  is  not  acceptable  at  high

temperatures.  Therefore, at high temperatures one may write

ez=1z , (8.17)

which after integration gives

f T =
zD

3

3
= ℏD

kT 
3

1
3

, (8.18)

from which D must be found.  As acoustic phonons are responsible for the majority

of  the  heat  transport,  only  the  three  acoustic  modes  will  be  taken  into  account.

(Acoustic phonons have a much higher phase velocity  than optical  phonons.) If  N

atoms are considered, each with 3 degrees of freedom, the Debye frequency can be

calculated from

D=c
362 N

V
, (8.19)

where N is the number of atoms in the sample, V is the volume of the sample and c is
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the phonon propagation speed.  The total number of atoms in a sample is given by

N=
V A0 b

RAM
, (8.20)

where  A is Avogadro's number, RAM is the relative atomic mass (Kg/mole) of the

atomic basis, b is the number of atoms in the atomic basis and is  the density of the

substance.   Substituting 8.20 into 8.19 one obtains

D=c
3 62 A0 b

RAM
. (8.21)

Substituting 8.18 into 8.12 results in

Q=
k  A

22 c1
2 3

[T 1D1
3 −T 2D2

3 ] . (8.22)

The values of  can either be calculated graphically from [19] or calculated from the

full  solution of the tensor equations governing the behaviour of the interface [15].

When  both  transverse  and  longitudinal  acoustic  waves  are  included  in  8.22,  one

obtains [19]

Q=
k A

22 3  l

c1
2 

2 t

ct
2 [T1D1

3 −T 2 D2
3 ] . (8.23)

From this equation, the heat drop across the interface can be calculated.

8.Error: Reference source not found3.3 The Diffuse Mismatch Model (DMM)

The main assumption made within the AMM theory is  that  continuum mechanics

holds, so that there is no diffuse scattering at the interface [10].  In DMM theory, it is

assumed that all phonons scatter at the interface and that continuum acoustics does not

apply.  In the DMM, the transition probability is determined only by the ratio of the
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density of states on either side of the interface [24].

The DMM theory assumes that:

1. both sides of the interface are isotropic;

2. the transition probability is independent of temperature;

3. there are no anharmonic interactions;

4. as phonons scatter on the interface they 'forget' where they came from and

5. a phonon incident on the interface scatters immediately.

The thermal boundary resistance is given by

hBd=
Q21

gross T2−Q12
gross T 1

AT2−T1 
. (8.24)

As long as the densities of phonon states on both sides of the interface are relatively

close and only a small temperature step (T2-T1) is experienced across the interface, the

gross heat flux from side 2 of the interface may be approximated as the heat flux term

from side 1 at temperature T2, i.e.

Q21
gross T2≈Q12

grossT2 . (8.25)

Thus, equation 8.24 can be rewritten as

hBd=
Q12

gross T2−Q12
gross T 1

AT2−T1 
. (8.26)

In the DMM, the phonons 'forget' where they come from when they impact on the

interface,  so that  the  transition  probability   is  not  dependant  upon wave vector.

Thus, the transition probability can be simplified so that

i , j  ,k =i  [10]. (8.27)

A notation has been adopted here, whereby i donates the side of the boundary from
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which the phonon came, i.e. 1 or 2, and j denotes the mode of the phonon.  Equations

8.2-8.6 are still valid as no generalisation was made.  Thus, the heat current may be

written as

Q12
grossT 
A

=1
2∑j ∫0

/2

∫
0

1
max

N1, j  ,T ℏc1, j12  , j ,cos sind d

(8.28)

The number of phonons with energy ℏ per unit area leaving side i is given by

  1
2∑j ∫0

/2

Ni , j  ,T c i , j  j ,cos sind . (8.29)

As the transition probabilities are independent of angle, the integration can be done

resulting in 1/2, giving

1
4 ∑j c i , jNi , j  ,T i  . (8.30)

Using the assumptions 1-4, and also assuming that both sides of the boundary have

the same Debye frequency, it can be shown [10] that the transition probability  can

be written as

i =
∑
j

c3−i , j
−2

∑
i , j
c i , j

−2 . (8.31)

Equations 8.28 and 8.26 can then rewritten as

hBd=
1
2∑j

c1, j1, j ∫
0

1
Debye

ℏ
dN  ,T 

dT
d , (8.32)

with

1, j=∫
0

/2

1 2 , jcossind . (8.33)
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Therefore, substituting 8.31 into 8.33 and integrating gives

 i , j =1
2

∑
j

c3−i , j
−2

∑
i , j
ci , j
−2 . (8.34)

Rewriting equation 8.3 as

N1, j  ,T = 2

22v1, j
3 exp ℏk b

T −1
(8.35)

and differentiating, results in

dN1, j  , T 
d T

=

ℏ3exp  ℏ
kbT 

22v1, j
3 k T2 [exp ℏ

k bT −1]
−2 . (8.36)

Next, 8.32 is numerically integrated evaluated using 8.36 and the reciprocal taken to

get the value of the thermal boundary resistance.

8.4 Values of TBR from the literature and DMM

The  diffuse mismatch model was chosen for this work, because it has shown some

agreement with experimental values of TBR [25].  Table 8.1 gives typical values of

TBR tabulated from the literature. The values obtained during the course of this work

for TBR were between 1-2x10-9m2K/W.  It can be seen that these values are in the

same  range  as  those  found  experimentally  for  material  systems  with  similar

mechanical properties.  The value is, however, at least an order of magnitude smaller

than the value of TBR found in mechanically dissimilar systems such as GaN/Si.
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8.5 Inclusion of thermal boundary resistance in device simulators

In order to accurately and efficiently include TBRs in our device simulator, a finite

difference  (FD)  scheme  has  been  adapted  to  model  the  thermal  discontinuities

introduced by the TBR at material interfaces. This scheme was originally proposed by

Stern  [27]  to  model  the  discontinuities  in  Quasi-TE  modes  of  semiconductor

waveguides. This approach accurately accounts for the step-wise gradient change in

temperature  at  the  material  interfaces  and the  effect  of  TBR.   At  the  boundaries

between the calculation cells, temperature  continuity is enforced, except at material

interfaces, where there is a step proportional to the TBR.

Following  Stern's  work,  it  is  assumed  that  each  calculation  cell  “sees”  [27] an

apparent temperature T* in the neighbouring cell.  The * denotes that the temperature

value is an apparent value and not the true value.  (see figure 8.1) Thus, cell P “sees”

13

Interface TBR value (m2K/W) Method Device

This work 1.2x10-9 DMM EEL

GaAs/Al0.33Ga0.67As[25] 0.48x10-9 Experiment QCL

GaAs/Al0.15Ga0.85As[25] 0.87x10-9 Experiment QCL

InGaAs/AlInAs[25] 4.4x10-9 Experiment QCL

InGaAs/AlGaAsSb[25] 0.93x10-9 Experiment QCL

GaN/SiC[26] 1.2x10−7 Experiment HEMT

AlN/Si[26] 7−8x10−8 Experiment Thin film

GaN/Si[26] 7x10−8 Experiment HEMT

Table 8.1: Values of TBR available in the literature



the temperature T r 1
*  in cell R and the temperature T r  in cell P.  Conversely,

cell  R  “sees”   T r
*  in  cell  P  and  value  T r 1  in  cell  R.   These  apparent

temperatures,  give  a  powerful  way to  include the boundary  conditions  at  the  cell

interfaces within the discretisation scheme.

The general aim of the calculation is to obtain an expression for TP
r+1/2  and  TR

r+1/2, and

their derivatives on either side of the calculation cell interface, just inside cells P and

R respectively.  The temperatures and their derivatives are formulated in terms of real

and apparent temperatures.  The boundary condition due to the presence of TBR is

applied at the interface

T r 1 /2
R  −T r1/2

P =Rk p ∂ T
∂ x r1 / 2

P

. (8.37)

The left hand side of equation 8.37 is the drop in temperature across the interface and

the right hand side of the equation is the thermal boundary resistance multiplied by

the  heat  flux.   The  resulting  expression  is  then  manipulated  to  give  an  effective

temperature of T r 1
* , which can be put straight into a finite difference scheme.  The

process is repeated at the interface of cell P and L.
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Calculation of TP
r+1/2:

The temperature that cell P  “sees” in cell R can be described by the Taylor series

expansion around the point r+1/2 as

T r 1
* =∑

r=0

∞  hR

2 
m

 ∂m T
∂ x m 

r1 / 2

P 

. (8.38)

The first two terms in the series are,

T r 1
* =T r1 / 2

P 
hR

2  ∂T
∂ xm 

r 1 /2

P

. (8.39)

Therefore, rearranging to obtain T r 1 /2
P gives

T r 1 /2
P =T r1

* −
hR

2
T r1

* −Tr 
hRhP

2

(8.40)

or

T r 1 /2
P =T r1

* −
hR

hRhP
T r1

* −T r  . (8.41)
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This can be rewritten as

T r 1 /2
P =T r1

* 1− hR

hPhR
T r

hR

hPhR

. (8.42)

Calculation of TR
r+1/2:

The temperature that cell R  “sees” in cell R can be described by the Taylor series

expansion around the point r+1/2 as

T r 1=∑
m=0

∞  hR

2 
m

 ∂m T
∂ x m 

r1/2

R 

(8.43)

T r 1=T r1 / 2
R  hR

hPhR
 T  r1−T r

*  (8.44)

T r 1 /2
R =T r11− hR

hPhR
T r

* hR

hRhP

(8.45)

Calculation of (∂T/∂x)(R)
r+1/2:

Using a similar method as used to obtain TP
r+1/2 and TR

r+1/2, the expressions for the

derivatives  of  temperature  on  either  side  of  the  interface  are  obtained.   The

temperature cell R sees in cell P can be written in a Taylor expansion as

T r
*=∑

m=0

∞ −h p

2 
m

 ∂m T
∂ x m 

r1 /2

R

. (8.46)

The first two terms of the series are

T r
*=T

r
1
2

R −
hp

2  ∂T
∂ xm 

r 1/2

R

(8.47)

and using 8.44
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T r
*=T r1 1− hR

hPhR
T r

* hR

hPhR

−
hP

2  ∂ T
∂ x r1/ 2

R

(8.48)

h
p

2 ∂T

∂ x r1 / 2

R 

=T
t11− h

R

h
P
h

R
T

r
* h

R

h
P
h

R

−1 , (8.49)

which can be rewritten as

∂T

∂ x r1/2

R

=T t1
−T

r
* 1− h

R

h
P
h

R
 2

h
p

. (8.50)

Calculation of (∂T/∂x)(P)
r+1/2: 

The temperature cell P 'sees' from cell P is given by

T r=∑
m=0

∞ −hp

2 
m

 ∂m T
∂ xm 

r1 / 2

R

(8.51)

T r=T
r 

1
2

P −
hP

2  ∂ T
∂ x r1/ 2

P

(8.52)

then using 8.42

T r=T r 1
* 1− hR

hPhR
T r

hR

hPhR

−
hP

2  ∂ T
∂ x r1 / 2

P

(8.53)

and rearranging we obtain

 ∂T x

∂ x 
r1/ 2

P

=
2
hP 1− hR

hPhR  T r1
* −T r  . (8.54)

Applying the boundary conditions around cell r+1/2

Four expressions linking, temperatures  TP
r+1/2  and  TR

r+1/2 and their derivatives have

now been obtained.  Two boundary conditions are now applied.  The 1st boundary
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condition enforces the continuity of temperature except at material interfaces where it

is proportional to the heat flux.

T r 1 /2
R  −T r1/2

P =Rk p ∂ T
∂ x r1 / 2

P

. (8.55)

The 2nd boundary condition enforces the continuity of net heat flux across material

interfaces

 ∂ T
∂ x r1/ 2

P

k P=k R  ∂T
∂ x r1 /2

R

. (8.56)

Therefore, from 8.56, 8.54 and 8.42

T r
*=T r1−

kP

kR

T r1
* −T r  . (8.57)

Then, rewriting 8.55 with 8.50, 8.54

T r 11− hR

hPhR
T r

* hR

hPhR

−T r1
* 1− hR

hPhR
−T r  hR

hPhR
=

R k P 2

hP
1− hR

hPhR
T r1

* −T r 

. (8.58)

After rearranging and using 8.57, one obtains

T r 1
* =

T r 1−T r  h R

hPhR 1− k P

k R − 2 R k P

hP 1− hR

hPhR 
hR

hPhR
 k P

k R

−11
2RkP

hP
1− hR

hPhR


, (8.59)

which is the temperature cell P 'sees' in terms of Tr+1 and Tr after taking into account

the thermal boundary resistance.  Exactly the same process is followed again to obtain

a value of T r−1
* in terms of Tr-1 and Tr  for the interface between cells L and P.
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Calculation of  TP
r-1/2:

T
r
=∑

m=0

∞  h
P

2 
m

 ∂m T

∂ x m 
r−1 / 2

P

(8.60)

T
r
=T

r−1 /2
P 

h
p

2  ∂T

∂ x r−1/2

P

(8.61)

T r=T r−1/ 2
P 

hP

h LhP
T r−T r−1

*  (8.62)

T r−1/2
P =T r−

hP

h LhP

T r−T r−1
*  (8.63)

T r−1/2
P =T r 1− hP

hLh P  hP

hLhP

T r−1
* (8.64)

Calculation of  (∂T/∂x)(P)
r-1/2:

T r −1
* =∑

m=0

∞ −hL

2 
m

 ∂m T
∂ xm 

r-1/2

P

(8.65)

T r −1
* =T r−1/ 2

P −
hL

2  ∂T
∂ x 

r−1/2

P

(8.66)

h L

2  ∂ T
∂ x r−1 / 2

P

=T r−1 / 2
P −T r −1

* (8.67)

Using 8.64 we obtain,

h L

2  ∂ T
∂ x r−1 / 2

P

=T r 1− hP

hLhP
−T r−1

* 1− hP

hLhP
 (8.68)

 ∂ T
∂ x r−1 / 2

P

=
2
hL

1− hP

hLhP
 T r−T r−1

*  (8.69)

Calculation of   Tl
r-1/2:
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T r
*=∑

m=0

∞  hP

2 
m

 ∂m T
∂ xm 

r −1/2

L 

(8.70)

T r
*=T r −1 /2

L  
hp

hPhL
T r

*−T r−1  (8.71)

T r −1 /2
L =T r

* 1− hP

hPhL
 hP

hPhL

T r−1 (8.72)

Calculation of  (∂T/∂x)(L)
r-1/2:

T r −1=∑
m=0

∞ −hL

2 
m

 ∂m T
∂ xm 

r−1/ 2

L

(8.73)

T r −1=T r−1 / 2
L −

hL

2  ∂T
∂ x r−1 /2

L

(8.74

Using equation 8.72, we obtain

h L

2  ∂T
∂ x r−1/ 2

L

=T r −1/ 2
L −T r −1 (8.75)

h L

2  ∂T
∂ x r−1 / 2

L

=T r
* 1− hP

hPhL
 hP

hPhL

T r −1−T r−1 (8.76)

 ∂T
∂ x r−1 / 2

L

=
2
hL

1− hP

hPhL
T r−1−T r−1 (8.77)

The boundary conditions are applied at point r-1/2

As above, the boundary conditions of continuity of temperature, except at a TBR and

continuity of heat flux are applied.
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1st boundary condition

T x−1/ 2
P −T x−1/ 2

L =RL k L ∂ T
∂ x r−1/ 2

L

(8.78)

2nd boundary condition

 ∂ T
∂ x r−1 / 2

L

k L=k P  ∂T
∂ x r −1 /2

P

(8.79)

Using 8.79, 8.77 and 8.69, one obtains,

T r
*=

kP

k L
T r−T r−1

* T r −1 (8.80)

T r 1− hP

hPhL
T r−1

* hP

hLhP

−T r
*1− hP

hPhL
− hP

hPhL

T r−1

=
2 RL k L

hL
1− hP

hPhL
 T r

*−T r−1
(8.81)

Then using 8.80 and rearranging one obtains,

T r −1
* =

T r −1−T r 1− h P

hLhP

−
kP

k L 1− hP

hPhL − 2 RL k p

hL 1− h P

hPhL 
hP

hLhP


k P

k L
1− hP

hPhL
2 RL k P

hL
1− hP

hPhL


(8.82)

using

1−
hP

hLhP

=
hL

hLhP

(8.83)

and 1−
hL

hLhP

=
hP

hLhP

. (8.84)

Finally, equation 8.82 may be rewritten as,
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T r −1
* =

T r −1−T r  hL

hLhP 1− k P

k L − 2 RL k p

hL 1− hP

hPhL 
hL

hLhP
 k P

kL

−11
2 RL k P

hL
1− hP

hPhL


. (8.85)

The temperatures  that  a  cell  P  “sees” either  side of  it  have been described.   The

expressions for T r −1
* and T r 1

* can be substituted into the usual finite difference

scheme

∂
∂ x

kr
∂
∂ x

T r=2 kr

 x1 T r1
* −T r  x 2 x1 x2 T r −1

*

 x1 x 2 x1 x2

O hx
2 , (8.86)

  where  x1  and  x 2  have been redefined as

  x1=
hL

2


hP

2
 (8.87)

and  x 2=
hP

2


hR

2
 . (8.88)

The  above  derivation  was  only  performed  for  the  1D case.   However,  using  the

superposition principle,  this derivation can be extended to the  2D or even the 3D

case.   The  result  of  the  above  derivation  is  a  numerically  simple  and  robust

discretisation scheme, taking into account TBR at the material interfaces.

8.6 Validation of numerical scheme

In this section, analytical and numerical solutions of a thermal problem including a

TBR are compared to demonstrate the accuracy of the discretisation scheme.  The 1D

heat conduction equation is given as 

Q=−kA
dT
dx

, (8.89)
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where Q is the total heat flowing through cross-section  A.  By solving 8.89 and 8.1

with  appropriate  boundary  conditions,  analytical solutions  for  simple  thermal

problems can be obtained.  For the purpose of this  comparison, a material  system

comprised of a 100m thick slab of GaN joined to a 100m thick slab of SiC was

modelled.  The cross-sectional area of the slabs considered was 1mmx100m. The

thermal conductivities are given in table  8.2 and the TBR at the GaN/SiC interface

was taken as 1.2x10-9Km2/W.

A uniform heat flow of 1W was simulated flowing through the two slabs.  This heat

flowed from a source in perfect contact with the GaN to a perfect heat sink in contact

with the exposed surface of the SiC.  The exposed surface of the SiC was held at

300K.  The calculation was performed at a high temperature (>300K) to highlight the

applicability of the method to device simulation.  Nevertheless, this scheme is equally

applicable to low temperature systems.

A comparison of the numerically  calculated  and analytical  solutions  are shown in

figure  8.2.  It shows good agreement between the analytical  and numerical results.

Note that the presence of the TBR results in a sudden drop in temperature across the

boundary and also that there is a change in the gradient of the temperature exactly at

the interface between the two materials. 
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Material Thermal Conductivity 
W/m/k

SiC 350 [28]

GaN 130 [28]

Table 8.2: Simulation parameters.



Also included in figure 8.2 for comparison, is a numerical result that was calculated

without including TBR. It can be seen that an error of the order of 10mK is introduced

into the simulation by not including TBR at the interface.

8.7 The impact of TBR on a device with multiple epitaxial layers

In this section, a more complex example is demonstrated.  A structure is simulated

that contains multiple epitaxial layers, such as would be found in a VCSEL mirror.  In

this  example,  only the thermal problem is  solved (i.e.  not  the electrical  problem).

Figure  8.3 plots  the  thermal  profile  across  a  structure with  30  epitaxial  layers  of

GaAs/AlAs.  In one simulation, the impact of TBR has been included and in the other

the impact of TBR has not been included. Figure 8.4 shows a zoomed in section of the

graph where the impact of TBR can be seen.  This shows a 5K increase in temperature
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Figure 8.2: Comparison of numerical and analytical solution of heat flux



across the structure due to the inclusion of TBR.  The value of TBR was calculated

from the DMM model for each epitaxial interface.

The inclusion of TBR has a two-fold impact on the simulation.   Firstly, there is a

temperature  rise  due  to  the  phonon  reflections  at  the  interface.   There  is  also  a

secondary effect because the device is hotter due to the TBR.  The lattice conductivity

decreases with temperature, thereby pushing up the device temperature further.  This

can be seen in figure 8.5,  where the thermal conductivity of the bulk layers has been

plotted.

The  predicted  thermal  conductivity  for  structures  of  the  same  width,  but  with

increasing number of DBR mirror layers (thus interfaces) is plotted in figure 8.6.  It
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Figure 8.3: The thermal profile across a structure with and
without TBR included.



can be seen that even for 30 interfaces, the thermal conductivity has been reduced by

15%.
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Figure 8.4: A zoomed in section of figure 8.3, the 
temperature steps caused by TBR can clearly be seen in
the figure.

Figure 8.5: The predicted thermal conductivity of a 30 
layer VCSEL.



8.8 Inclusion of the impact of TBR within a full device simulator

In this section, the discretisation scheme developed in Section 8.5  is included in our

2D (lateral and vertical) laser diode simulation tool developed in chapter 5-7. It self-

consistently solves the carrier continuity, drift-diffusion, Poisson's, lattice heat flux,

quantum well  capture/escape and photon rate  equations. The heat  sources and the

continuity equations have been derived from a moment expansion of the Boltzmann

transport equation. The valance band structure of the QW is calculated using a 4x4

band k.p model, while the conduction band structure is calculated using a band anti-

crossing model. Gain and spontaneous emission are calculated from the band structure

using Fermi-Dirac statistics and Fermi's golden rule.

The  specific  devices  investigated  were 1.3m dilute  nitride  edge-emitting  double
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Figure 8.6: Average thermal conductivity across the DBR mirror as the 
number of layers is increased and the thickness of the structure kept the 
same (red line).  Plotted on the same graph is a line indicating the 
predicted thermal conductivity of the structure when TBR is not included.
(green line).



quantum  well  lasers  with  7nm  Ga0.613In0.387N0.012As   quantum  wells.  The  GaAs

confinement  regions  were  20nm  thick  and  were  surrounded  by  160nm  thick

compositionally graded AlGaAs layers.  Figure  8.7 shows the epitaxial structure of

the device. The ridge width measured 3.2m and was etched to a depth of 1.3m.

The etched trenches  were filled  with  a  polymer  with  a  low thermal  conductivity,

which was assumed to be 1x10-6 W/(mK). The uncoated facets were assumed to have a

reflectivity of R=0.32. These devices are operated with a typical front facet output

power of Pout=10–15mW.

For the simulations, a heat sink with a thermal resistance of 1K/W coupled to a 300K

reservoir was used to approximate the heat leaving the device. A typical simulated L-I
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Figure 8.7: Device structure. The dashed lines 
indicate where TBRs were introduced. The device 
is symmetrical about the y-axis and only the left 
half is shown in this figure.



curve is shown in figure 8.8. The isothermal simulation refers to a simulation where

the lattice thermal profile across the device is  set  at  300K (experimentally such a

curve could be obtained by running the laser with a pulsed current with a very low

duty cycle). The curve labelled thermal simulation refers to the case where the lattice

heat  equation has been solved throughout  the device and corresponds to  the laser

operating  in  CW.  The  observed  roll  over  is  predominantly  due  to  the  thermal

dependence  of  the  gain  and  the  increase  of  the  Auger  and  Shockley-Read-Hall

recombination rates with temperature.

A simulated 2D thermal profile of a device is  shown in figure  8.Error:  Reference

source not found without correcting for TBR.  The device is producing 14mW of

optical power at the front facet from an injection current of 65mA. As the simulation

is performed in half-space, only half the ridge and one etched trench are visible in the
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Figure 8.8: Typical isothermal and thermal L-I curves.



plot.  The  simulation  area  corresponds  to  the  structure  shown in  figure  8.7.   The

polymer filled etch trench is indicated with a dotted box. The QWs are just below the

etch trench within the dense mesh. The area of high temperature  to the right of the

etch trench is the ridge waveguide.

The simulation was repeated, but correcting for the impact of TBR. Figure 8.9 shows

a  vertical  temperature  profile  through  the  centre  of  the  device  (x=0)  for  the  2D

simulations with and without TBR. The inclusion of TBR results in a higher predicted

QW/ridge  temperature.  The  abrupt  temperature  steps  at  the  QW/confinement

interfaces due to TBR are visible in the magnified section of the figure.
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Figure 8.7: Half-space 2D thermal profile without including the effect 
of TBR. The simulation window corresponds to the area shown in 
Figure 1. The area in the box represents the filled etched trench.

RW
QWs

Etched trench



The relative increase in the 2D temperature profile due to the inclusion of TBR is

plotted in figure  8.Error: Reference source not found. The rapid rise in temperature

under the ridge is due to a combination of the multiple material interfaces surrounding

the QWs at the bottom of the ridge and the high heat flux due to high rates of Joule

heating and free carrier absorption within the ridge.  The increase in the predicted QW

temperature due to the inclusion of TBR is plotted as a function of injection current in

figure 8.Error: Reference source not found.  As discussed earlier, the exact TBR of the

interfaces are not known due to the lack of experimental data.  Therefore, a range of

TBR values were simulated.  TBR values 1, 2, 4 and 8 times larger that that predicted

by the DMM were used.

31

Figure 8.9: A slice through the 2D simulation profile taken in the centre of the 
device. Simulations with and without TBR are shown. Epilayer interfaces are 
indicated with dotted vertical lines.  Abrupt temperature steps are visible at the 
QW/confinement layer interfaces.  The values of TBR were calculated using 
DMM theory as a function of interface temperature.
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Figure 8.10: Difference in 2D thermal profiles due to the inclusion
of TBR as predicted by the DMM.

Figure 8.11: Difference in average quantum well temperature 
between simulations including TBR and not including TBR as a 
function of current.  The curve labeled x1 is that predicted using 
DMM theory and x8 is that predicted using a value of TBR x8 
bigger than that predicted by DMM.

RW

QWs

Etched 
trench



Figure 8.12 shows the corresponding change in the light-current (L-I) curves with and

without TBR. TBR causes a larger reduction in the light output at higher currents

because the heat flux flowing down the ridge and across the epitaxial interfaces of the

QWs is larger.  Thus, the temperature drop across the TBRs is also larger.

In  order  to  investigate  the  impact  of  more  epitaxial  interfaces  on  the  predicted

temperature, a device with four quantum wells was simulated. The difference in QW

temperature due to the inclusion of TBR for devices with 2 and 4 quantum wells is

plotted  in  Figure  8.13.  With  an  increasing  number  of  quantum  wells,  and  thus

interfaces, the discrepancy in temperature is increased from ~0.3K to ~0.4K.
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Figure 8.12: Change in L-I curves due to the inclusion of TBR.  The 
curve labeled x1 is that predicted using DMM theory and x8 is that 
predicted using a value of TBR x8 bigger that predicted by DMM.



8.9 The impact of TBR on high power high brightness 980nm ridge waveguide

lasers

The 1.3m device investigated in the previous section is a low power device.  The

device is typically not to be driven hard, therefore little heat is generated.  Thus, it

would be expected that the amount of heat flux would be low and as such the impact

of TBR would be low.  In this section, the impact of TBR on a high power 980nm

ridge waveguide device is considered.  High-power, single mode 980nm laser diodes

are  primarily  used  for  pumping  erbium  doped  fibre  amplifiers  (EDFAs)  in

telecommunication networks. Modern commercial 980nm pump lasers can deliver up

to  1.2W of  output  power  with  lifetimes  in  excess  of  10,000 hours,  while  output

powers of up to 1.8W have been reported [29]. In order to achieve the long lifetimes

required  by  the  telecommunications  industry,  laser  structures  must  be  optically,
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Figure 8.13: Difference in the QW temperature between simulations 
that include and neglect TBR for devices with 2 and 4 QWs.  The 
values of TBR were predicted using DMM.



electrically  and  thermally  optimised.  The  use  of  accurate  and  predictive  device

simulation tools is invaluable during the optimisation and design stages.

The device studied in this work is based on an epitaxy presented elsewhere [30]. In

brief,  it  consists  of  a  single  9nm  InGaAs  QW  with  0.16m  thick  InGaAsP

confinement regions and 1.5m thick InGaP cladding regions-all grown on a GaAs

substrate. The RW device studied here has a 2mm long stripe, which is 3m wide.

The back and front facet reflectivities are 0.90 and 0.03, respectively.  A total of seven

interfaces are present within the laser structure. At each of these epitaxial interfaces, a

TBR was  introduced.  In  this  work,  we use  the  Diffuse  Mismatch  Model  [10]  to

estimate the values of TBR associated with each interface.  Although the values of

TBR predicted by DMM vary as a function of material composition and temperature

DMM predicts values of around ~1x10-9m2K/W for the interfaces within the structure.

For the purpose of the simulations here, it is assumed that the devices are mounted p-

side down on a heatsink stabilised at a temperature of 300K.

A series of simulations  were again performed at different biases with and without

including TBR. A simulated L-I curve where thermal boundary resistance has been

neglected is plotted in figure 8.14. A gradual roll-over in the output power is observed

and an output power of >1W is achieved. The simulations were repeated including

TBR and in figure 8.15 the impact of this on the L-I curve is shown. At low injection

currents, where there is little device heating and thus low heat flux, the impact of TBR

on the L-I curve is small. However, as heat generation increases, the impact of TBR
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manifests itself as a reduction in the optical output power of up to 0.6mW.  In figure

8.16, the lattice temperature Tl, LO-phonon temperature TLO, electron temperature Te

and hole temperature Th are  plotted  as  a function  of  injection  current  for  a  point

located in the QW at the centre of the device. In this simulation the effects of TBR are

neglected. It can be seen that the electron and hole temperatures 'ride' on the hot LO-

phonon temperature [32].
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Figure 8.14:  L-I curve for a device simulation where 
TBR is neglected.



As the injection current increases, so does the impact of the hot phonon bottleneck.

Figure 8.17 then plots the difference in the four temperatures as a function of injection

current for the case when TBR has been included in the simulation. In this case, it can

be seen that the lattice temperature is affected the most by TBR.
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Figure 8.16: QW temperatures (Tl, Te, Th, TLO) plotted as a 
function of injection current for the case where TBR has 
been neglected.

Figure 8.15: Change in the optical power due to the impact of 
TBR.



Figure  8.18 plots the thermal profile down through the epitaxial layer sequence for

simulations with and without TBR. Figure 8.19 shows a zoomed in section of the QW

region, where a sudden jump in the lattice temperature caused by the introduction of

TBR can be seen.
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Figure 8.17: Increases in temperatures due to TBR.
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Figure 8.18: Thermal profile through the epitaxial 
layer sequence for simulations with and without TBR. 
These profiles were obtained for an injection current 
of 1.4A.

Figure 8.19: Zoomed in section of the QW region. 
These profiles were obtained for an injection current 
of 1.4A



Figure 8.20 plots the QW temperatures laterally across half of the device (where 0m

corresponds to the centre of the RW) as obtained from the simulations where TBR

was neglected. Figure  8.21 then shows the difference in the lateral QW temperature

profiles  caused  by  the  inclusion  of  TBR.   The  impact  of  the  large  LO-phonon

bottleneck can be seen elevating the electron and hole temperatures in the centre of

the device where carrier capture is at its greatest and hence LO-phonon generation is

at a maximum.

In this section, the impact of the thermal boundary resistance on the performance of a

high-power 980nm ridge waveguide laser has been studied. It is found that with the

inclusion  of  TBR,  an  increase  in  the  QW  lattice  temperature  of  up  to  0.4K  is

observed. This results in a decrease in the optical power of up to 0.6mW. Whilst the

impact of TBR is still relatively small in the device considered here, its effects are

somewhat greater than those found in smaller and lower power devices.
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Figure 20:  Lateral thermal profiles across the 
device obtained from a simulation neglecting TBR.



8.10 Carrier heat flux and TBR

8.10.1 Introduction

So far in this work, only the lattice heat flux has been taken into account.  The heat

transported by the carriers has been neglected.  In order to fully consider the impact

TBR has on a device,  Possion's equation,  the  current continuity equation and the

lattice  heat  flux  equation  must  be  solved self  consistently  along  with  the  carrier

energy balance equations.  These two extra equations enable the electron and hole

populations to have independent temperatures to that of the lattice.  They introduce a

three level bulk temperature model, where heat energy can be transported within the

carrier populations via heat diffusion and electrical current flow.  By including the

carrier heat flux equations within the device simulator, it will be demonstrated that the

carrier populations can absorb heat on one side of the TBR and deposit it on the other,

thereby reducing the impact of the TBR.  The derivation of the carrier energy balance

41

Figure 8.21: The differences in the thermal profiles 
caused by including TBR. At an injection current of 
1.4A.



equations has been discussed in Chapter 5 and a derivation is available in Appendix

A.  For a more in depth treatment, the reader is referred to the doctoral dissertation of

Martin Knaipp (1998) available from the Technical University of Vienna [31].  In the

remainder of the chapter, the thermal model is extended to solve the carrier energy

balance equations.

8.10.2 The model

The carrier energy balance equations are written in terms of an error (or remainder)

function f for solution by Newton's method.  The remainder of the carrier conservation

equation for electrons is given as 

f n=∇ E c

q
−⋅J n−

3 k B

2
⋅RT nn

T n−T L

n
−∇⋅Sn , (8.90)

where fn is the residual for the electron energy flux equation.  Similarly, the residual of

the hole heat flux equation fh  is written  as

f h=∇ E c

q
−⋅J h−

3 k B

2
⋅RT h p

T h−T L

 h
−∇⋅Sh . (8.91)

The remainder of the lattice heat equation is

f l=∇⋅ L∇ T LH . (8.92)

The electron heat flux is given as

Sn=− n ∇T n−
5
2

k B T n

q
J n (8.93)

and the hole heat flux is given as
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S p=− p ∇T p
5
2

kB T p

q
J p . (8.94)

The thermal conductivities of the carrier gasses are given by [33]

 n= 5
2
cn  k B

2

q
T nn n  (8.95)

and  p= 5
2
c p k B

2

q
T p p p . (8.96)

The lattice heating term is then given as

H=
3 kB

2
⋅n T n−T L

n
 p

T p−T L

 p RE c−E v
3
2

k T eT h (8.97)

8.10.3 Newton's method

The above equations are a set of highly non-linear differential equations.  One of the

most  efficient  solution  methods  is  to  use  Newton's  method.   A  simplified

representation of the sparse matrix is

[
∂ f l

∂T l

∂ f l

∂T e

∂ f l

∂ T h

∂ f e

∂T l

∂ f e

∂T e

∂ f e

∂ T h

∂ f h

∂T l

∂ f h

∂T e

∂ f h

∂ T h

] [T l

 T e

T h

]=−[
f l

f e

f h

] (8.98)

Matrix (8.98) is solved for the update temperature vector [T]. The temperatures are

then updated as follows:

T l
k1=T l

k T l
k1

(8.99)
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T e
k1=T e

k T e
k1

(8.100)

T h
k1=T h

kT h
k1

(8.101)

A sparse matrix solver written by the Numerical Algorithms Group [34-35] was used

to solve the matrix.    The carrier  thermal conductivities  were not  included in the

Newton solver.  Instead, they were updated every iteration.  

8.10.4 Jacobian elements

In  order  to  solve  8.98,  the  derivatives  must  be  calculated.   Generally  numerical

derivatives are not accurate enough.  Therefore analytical derivatives are used.  These

are given below:

Derivatives of the lattice heat conservation equation

∂ f l

∂T l

= ∂
∂ T l

∇⋅L ∇T L −
3 kB

2
⋅ n
n


p
 p  (8.102)

∂ f l

∂T e

=
3 kB

2
n
 n


3
2

k R (8.103)

∂ f l

∂T h

=
3k B

2
p
 p


3
2

k R (8.104)

Derivatives of the electron heat conservation equation

∂ f e

∂ T l

=
3k B

2 −n
n  (8.105)

∂ f e

∂T e

=
3 kB

2 R
n
 n − ∂

∂T e

∇⋅Sn (8.106)

∂ f e

∂T h

=0 (8.107)
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Derivatives of the hole heat conservation equation

∂ f h

∂T l

=
3k B

2
−p
 h

(8.108)

∂ f h

∂T e

=0 (8.109)

∂ f h

∂T h

=−
3 k B

2 R p
 h − ∂

∂T h

∇⋅Sh (8.110)

8.10.5 Carrier relaxation times

To calculate  the  carrier  relaxation  times  e and  p,  an  empirical  model  based  on

Monte-Carlo  simulation  is  implemented.   In  this  model,  the  scattering  time  is  a

function  of  both  the  lattice  and  electron  temperatures  [36-38].   This  model  is

applicable to all zinc-blende materials [36-38].  The scattering time for ternary alloys

is given in terms of the scattering time for binary alloys using the following relation

 ,0
AB = , 0

A 1−x   ,0
B xC 1−x  x

, (8.111)

where the bowing parameter C is given by

C= , 0  ,1 expC1  T n

300
C 0

2

C 2  T n

300
C 0 C3  T L

300  (8.112)

and

C  ,0
AB=C  , 0

A 1−x C  ,0
B xCC 1−x  x

. (8.113)

The constants for AlGaAs are given in Table 8.3. A constant relaxation time of 0.1ps

is used for the hole relaxation [36-38].
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8.10.6 Results for a simple slab of GaAs with a layer of defects

In order  to  gain  an understanding of  the  how the  lattice  and electron heat  fluxes

interact around a TBR, a simple example is first examined.  A TBR is placed half way

down a slab of GaAs.  (This situation could arise due to defect formation arising from

a regrowth step and a dirty interface.)  Although TBRs are more commonly associated

with the interface of two dissimilar materials, this example offers a way to examine

the  interaction  the  carrier/lattice  heat  fluxes  around  a  TBR  without  the  added

complication of a change in the band structure which introduces additional heating

terms and makes the interpretation of the results more difficult.

The slab is doped with 1x1023m-3 donors.  Each end of the slab is capped with a thin

layer  of  gold,  so  that  the  electron  and  lattice  temperatures  are  assumed  to  be  in

equilibrium at both ends of the slab, i.e.

T l 0=T e0=T h 0     T l L=Te L=T h L  . (8.114)

A voltage is applied across the device and the interplay of electron heat, lattice heat

and TBR are examined.  The electron and lattice temperatures across the device are

plotted in figure 8.22.   A clear step in the middle of the graph is visible for both the

electron and lattice temperatures due to the TBR.  The step in the lattice temperature

is very abrupt due to phonon reflections at the interface.  However, the step in the

electron temperature is much smoother, because of the finite time it takes electrons to
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Material C[ps] ,1[ps] C C1 C2 C3 C0
A C0

B C
A[ps] C

A[ps]

AlGaAs -0.35 0.025 -61 -0.053 0.853 0.5 0 61 0.48 0.17
Table 8.3: Constants to calculate scattering times [36-38].



lose energy to the lattice.

The rate at which electrons lose energy to the lattice is plotted in figure  8.23.  The

overall  shape of the curve is due to the  Tn-Tl term in  (8.90).  The presence of the

double  spike  over  the  TBR  can  be  explained  by  the  abrupt  change  in  lattice

temperature and the gradual change in electron temperature.  On the up stream side of

the TBR, the electron temperature starts to approach the lattice temperature, so that

the electron relaxation rate decreases. This can be thought of as energy being given to

the carriers from the lattice.  As soon as the TBR is reached, there is a sudden drop of
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Figure 8.22: (a) Thermal distribution across the device, (b) zoomed in section of 
electron thermal profile and (c) zoomed in section of the lattice thermal profile.  The
impact of the TBR is clearly seen, as a discrete step in temperature.  The electron 
temperature can be seen relaxing slowly over the interface.

a

b

c



the lattice temperature away from the electron temperature.  Thus, the energy loss rate

of the electrons suddenly increases, so that the energy transferred to the carriers from

the up stream side of the TBR is returned to the lattice.

In figure 8.24, the two heat fluxes for the lattice Sl and for the electron population Se

are plotted.  Note that the lattice heat flux is greater than that of the electron energy

flux by an order of magnitude.  Note also that the energy fluxes on the right hand side

of the graph both tend to zero.  This is because of the isothermal boundary condition

assumed on the right hand side of the simulation.  The general shape of the electron

energy flux is determined by the term JTe in the energy flux equation 8.93 and has the

biggest  effect on determining the shape and magnitude of the curve.   The double

hump  in  the  centre  of  the  graph  is  produced  by  the  ∇Te term  as  the  electron

temperature rapidly decreases over the TBR. 
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Figure 8.23: (a) Electron relaxation rate over the whole device, (b) zoomed in 
section over TBR.

ba



8.10.7 Summary and further work on the transfer of heat due to carriers over

thermal boundary resistances

In this subsection, the interaction of electron and lattice heat flux over a TBR has been

examined.  It has been found, through a simple example, that the electron heat flux

can reduce the impact of a TBR over an interface.  Further work in this  area was

limited by the stability of the model.  Indeed, hydrodynamic models are well known

for their instability.  The main cause of this instability arises from areas of low carrier

concentration.  In these areas, carrier relaxation rates and heat conduction are very

low.  It therefore requires a very small error in the solution to start producing very

large temperatures in these areas.  Once these are fed back into the electrical model,

they can cause it to diverge from the correct solution. There are solutions available

[40], but they are outside of the scope of this work.  If this area were to be examined

further, a more robust model should be built.
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Figure 8.24: Energy fluxes across the device, with TBR included in the simulation.



8.11 Summary - Overview

In this chapter, the concept of thermal boundary resistance has been introduced.  The

methods available for calculating values of TBR have been reviewed and a finite-

difference scheme has been adapted from electromagnetics to introduce a step-wise

gradient change in the temperature profile at  material interfaces.  The scheme has

been incorporated into a state-of-the-art device simulator.

8.11.1 Summary - Edge emitting lasers

The  impact  of  thermal  boundary  resistance  on  the  performance  of  a  high-power

980nm ridge waveguide laser has been studied. It is found that an increase in the QW

lattice temperature of up to 0.4K is observed with the inclusion of TBR. This results

in a 0.6mW decrease in optical power. Whilst the impact of TBR is relatively small in

the devices considered here, its effects are somewhat greater than those found in the

1.3m low power devices.   This  suggests  that  the effects  of TBR could be more

significant in structures operating at higher powers.

8.11.2 Summary - VCSELs

It is well known that the VCSELs have a much lower thermal conductivity than would

be predicted from the bulk thermal conductivity values alone [39].  The example in

this chapter demonstrated the dual impact of TBR on such a structure - the increase in

temperature caused by the TBR itself and the reduction in bulk thermal conductivity

caused  by  the  increased  temperature.   It  also  suggests  that  the  effect  could  be
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important  in edge emitting  devices with short period superlattice (SPSL) cladding

layers.

8.11.3 Summary – Carrier/lattice heat flux

The full set of hydrodynamic equations has been solved and it has been shown that

carrier heat fluxes can reduce the impact of TBR because of the parallel heat transport

mechanism across the interface.

8.11.4 Concluding remarks and further work

1. Currently, a truly predictive and accurate model for calculating the value of

TBR is not available.

2. There is a lack of a systematic study of the TBRs associated with the materials

found in optoelectronic devices.  

3. Both  a  macroscopic  model  and experimental  values  that  agree  are  needed

before TBR can be included in optoelectronic device simulators in a useful

way.

4. As the size of devices shrinks to the nanometer (e.g. QCLs) scale, the need for

accurate and predictive models for TBR will become increasingly important.
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