
Dilute nitride lasers and Chapter 7
non-equilibrium phonon
populations

7.1 Introduction

In this chapter, the thermal model developed in Chapter 5 is extended to include the

impact  of  non-equilibrium LO-phonons  generated  via  QW carrier  relaxation. The

strong LO-phonon/carrier interaction, coupled with the finite LO-phonon decay time,

results  in  a  hot-phonon  population  being  formed  around  the  QW.   This  in  turn

elevates the QW carrier temperature far above that of the lattice. The impact of the hot

phonon population (or phonon bottleneck) on the transient response and the light-

current (L-I) characteristics of the device are studied. It is found that the LO-phonon

bottleneck  is particularly  large  in  dilute  nitride  devices  because  of  the  large

conduction band offset.

At moderate injection currents, the hot phonon population is found to increase the

carrier temperatures in the QW by up to 7K above that  of the equilibrium lattice

temperature.  At  high  injection  currents,  the  phonon  bottleneck  can  significantly

decrease the optical power.

7.2 The LO-phonon bottleneck

Before the bulk 3D carriers can reach the lasing states, they must first be captured into
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the confined 2D energy states at the top of the QW.  In terms of energy, there is a

considerable difference between the 2D states at the top of the QW and those at the

bottom (near the lasing states).  As the carriers relax inside of the QW, they lose

energy and momentum.  At room temperature, the dominant scattering mechanism for

carriers  in  GaAs-type  semiconductors  is  carrier/LO-phonon  scattering.   Thus,  as

carriers relax in the QW, a large number of LO-phonons are generated.  The process

of carrier capture and relaxation is depicted in figure 7.1.  

LO-phonons have a low phase velocity due to their flat dispersion curve (see figure

7.2). Thus, they cannot propagate away from the QW.  Finally, a large population of

LO-phonons can build up around the QW, due to their finite decay time.  Due to the

strong  LO-phonon/carrier  scattering  mechanism,  the  hot  LO-phonon  population

elevates  the  temperature  of  the  carrier  population.   This  spreads  out  the  energy

distribution of the carriers and decreases the material gain.
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Figure 7.1: Capture of carriers to lasing states.



The carrier/phonon problem can be modelled by treating the carrier populations as a

gas.   Injected  electrons  heat  the  carrier  gas,  which  continually  relaxes  towards

equilibrium with the lattice via LO-phonon emission.  This can be represented using a

rate  equation  model,  with  one  rate  equation  for  the  energy  of  each  population  -

electrons, holes, LO-phonons and equilibrium lattice phonons.  These rate equations

are solved for the electron, hole and LO-phonon temperatures.

7.3 Hot phonon models in the literature

Early rate equation models used to describe laser diodes neglected the impact of non-

equilibrium  LO-phonons  [1,2].   In  1993,  Tsai  [3]  considered  the  impact  of  hot-

phonons in QW laser diodes.  In this work, the lattice heat conduction equation was

solved along with the carrier coupled photon rate equations, electron/hole temperature

rate equations and an LO-phonon rate equation.  This model was the first to make the

following assumptions:

● Each confined carrier has an energy of kT (from 2D partition principal).

● Phonons were modeled as relaxing towards the hot carrier gas rather than the
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Figure 7.2: Dispersion relations.



carrier gas relaxing towards the phonon population.

● The LO-phonon dispersion curve was assumed flat.

However, carrier temperatures of over 480K were predicted, for lattice temperatures

as low as 320K.

In  1996,   the  work  was  extended [4]  using  scattering  times  calculated  from first

principles  as  a  function  of  k-vector  and  temperature.   The  piezoelectric  acoustic

phonon,  deformation  potential  acoustic  phonon, deformation  potential  optical

phonon,  and  polar optical  phonon (POP) scattering times were evaluated.   It was

found  that  at  room  temperature,  POP  scattering  dominates  the  carrier  relaxation

processes  and only  a  small  energy range of  LO-phonons  with  k-vectors  between

3x107 ~ 109m-1  are excited.   In the same year,  Yu included a [5] LO-phonon rate

equation in a VCSELs model.  In 1999, Tsai further extended the model to include

hole/TO-phonon scattering [6].  Monte-Carlo simulation has been used to investigate

the phonon bottleneck and validate the rate equation models.  Under strong lasing

conditions, the rate equation approach and the Monte-Carlo approach give comparable

results.  This is because the FD distribution still remains in quasi-equilibrium under

strong lasing conditions.  The need for proper time constants and accurate broadening

functions was underlined.  Crucially, this work neglected lattice heating, which led to

the underestimation of scattering times.

Matt Grupen (1998) [7] was the first to include the hot phonon effect in a full and

extensive device simulator.  He appreciated that momentum is not always conserved
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normal to the plane of the QW, thus the range of states with which the phonons can

interact  is  broadened.   A  complex  capture  escape  model  was  introduced,  which

discretised the energy space in the QW and included intrasubband scattering.  Later,

Liu [8] used the model developed by Grupen to model the LO-phonon bottleneck in

VCSELs.   It  predicted  carrier  temperatures  to  be  20K  above  that  of  the  lattice

temperature, whereby  the LO-phonon decay time was used as a phenomenological

fitting parameter to adjust the simulation to experiment.

Models previously described in the literature, have either been too simple to contain

an accurate representation of the fundamental device physics [1-6] or introduce a large

numerical overhead making them too complex and for day-to-day device design and

optimisation [7-8].  In this  chapter, hot carrier and hot LO-phonon effects will  be

included into the device simulator developed in Chapter 5.  Throughout, the priority

will be to minimise the computational overhead whilst retaining all the key elements

of the physics associated with the model.  The result is a model which is significantly

more accurate than the traditional quasi-equilibrium models used to model carriers in

the QW.  At the same time, the model is more computationally efficient than these

more complex models.

7.4 The model

One of the failings of the more simple models is the assumption that carriers in all the

bands of the QW behave as a 2D gas and thus all have kT worth of kinetic energy

(from partition theory).  For a highly degenerate gas, as in the QW of a laser diode,
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this assumption clearly does not hold.  The non-parabolic nature of the valance band

also makes this assumption questionable.  Another failing of the more simple models

is the assumption that all carriers, whether recombining radiatively or non-radiatively,

relax to the same energy in the QW.  This energy is often taken as the very bottom of

the lowest band in the QW.  This is also a questionable assumption because the lasing

energy is slightly above the bottom of the band.  Furthermore, the average carrier

energy is far above the bottom of the band.  By assuming that the carriers relax further

than  they  do  in  reality  before  they  recombine,  the  number  of  LO-phonons  being

generated is overestimated.

On the other hand, more complex simulators  model  the microscopic relaxation of

carriers down the well and discretise the QW states in energy space.  This approach

leads to a significant computational overhead.  Even in these more complex models

[7-8], it is often assumed that the electron and hole temperatures are the same, thus

neglecting  the  complex  carrier  relaxation  energy  pathways  (see  figure  7.3).   The

model developed within this chapter aims to eliminate many of the assumptions made

in  the  more  simple  rate  equation  models  whilst  holding  on  to  its  numerical

attractiveness – a feature which is missing from many of the more advanced models.

To this end, all key model parameters needed to model the heating of the degenerate

gases in the QW will be calculated directly from the non-parabolic band structure and

stored as a function of hole quasi-Fermi level, electron quasi-Fermi level,  electron

temperature and hole temperature.  This eliminates many of the assumptions of the

more simple models. The model parameters calculated from the non-parabolic band
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structure include:

● Average electron energy

● Average hole energy

● Electron energy density

● Hole energy density

● Average energy of the electrons/holes involved in stimulated emission

● Average energy of the electrons/holes involved in spontaneous emission

● Gain

● Spontaneous emission

The  calculation  of  these  parameters  is  a  computationally  expensive  process.

Therefore, these values are tabulated prior to the simulation and stored in look-up

tables ready for use at simulation time.  This model is then used to investigate the

impact of the LO-phonon bottleneck in the dilute nitride devices investigated in the

previous chapters.  Both the steady-state behaviour of the hot carrier populations and

and large-signal transient response are examined.

7.5 A numerical overview

The 2D electro-optical-thermal simulation  tool  presented in Chapter  5 is  extended

with a four-temperature energy balance model for each QW. This consists of energy

balance equations for the electron (7.24), hole (7.26) and LO-phonon (7.31) energies.

These equations are solved self-consistently with the other device equations to obtain

the  non-equilibrium  LO-phonon  (TLO),  electron  (Te),  hole  (Th)  and  lattice  (TL)
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temperatures. The 2D carriers in the QW are heated by carrier relaxation from the

bulk states to the lasing states (HCAP), free carrier absorption (HFCA) and lateral joule

heating  (HJ).  The  QW  carriers  lose  energy  through  the  emission  of  photons  via

stimulated (RStim), spontaneous emisson (RSpon) recombination and via the emission of

acoustic and LO-phonons.

The non-equilibrium LO-phonons have a finite lifetime (LO-a) and decay into acoustic

phonons.  The scattering time LO-a is calculated as a function of the lattice temperature

using equation (7.45). The energy pathways of the model are shown in figure 7.3. The

QW  carrier  energy  densities  (Ue/h),  average  lasing  energy  (Ēstim)  and  average

spontaneous emission energy (Ēspon) required for this model are calculated from the

non-parabolic band structure (7.3-7.5). Carrier-carrier scattering between the electron

and hole populations is treated using the relaxation approximation with the scattering

time constant.
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Figure 7.3: Schematic diagram of the energy 
pathways within the model.



The QW valance band structure is calculated using a 4x4 band k.p model and (for the

dilute nitride materials) the conduction band using a band anti-crossing model. The

non-parabolic  band  structure  is  used  to  calculate  the  carrier  densities,  gain  and

spontaneous emission rates as a function of the quasi-Fermi level position, electron

temperature  and  hole  temperature.   In  the  following  sections,  the  model  will  be

described in more detail.

7.6 Preliminaries

Before the model can be described in detail,  some preliminary definitions must be

made.

7.6.1 Electron densities

The electron and hole densities in the QW are calculated using,

n Fe ,Te=
1
Lw
∑
i=0

N e

∫
E i

0

∞

Di
eE f eE ,Fe ,T edE (7.1)

and

pFh ,Th=
1
Lw
∑
i=0

Nv

∫
Ei

0

∞

Di
h E  f h E ,Fh ,Th dE , (7.2)

where Ne/h is the number of conduction/valance bands in the QW and De/h(E) is the 2D

density of the electron states in the conduction/valance band. De/h(E) is a numerical

function calculated from the band structure.  The total 2D carrier density is divided by

Lw to give the QW carrier density in m-3.
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7.6.2 Carrier energy density

The carrier energy density is calculated in the same way, except that an energy term is

included in the integral.  Again, the expression is divided by the quantum well width 

to convert the 2D energy density into a 3D energy density resulting in

U e/hF e/h ,T e/h=
∑
i=0

N

∫
0

∞

E Di
e /h E  f e/hE , F e/h ,T e/h dE

Lw

. (7.3)

7.6.3 Average carrier energy

To calculate the average carrier energy, equation 7.3 is divided by the 2D carrier 

density to give

E e/h F e/h ,T e/h =
∑
i=0

N

∫
0

∞

E Di
e/ h E  f e/hE ,F e/h ,T e/h dE

∑
i=0

N e

∫
0

∞

Di
e/hE f e/h E , F e/h ,T e/hdE Lw

. (7.4)

7.6.4 Average lasing energies

The average energy of the lasing electrons is calculated using

EStim
e/h Te ,T h ,n , p ,ℏ=

∫
0

∞

∑
i=0

N

R stim
n E ,T e ,T h ,n , pL ℏ −E EdE

∫
0

∞

∑
i=0

N

Rstim
n E ,T e ,T h , n , pL ℏ−E  dE

. (7.5)

It is assumed that the laser has one mode which lases at the peak of the gain spectra.

Equation 7.5, is therefore only evaluated at ℏpeak.  The stimulated recombination rate

is calculated through
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Rstim
n E ,T e ,T h , n , p=PH c

nℏ   e2ℏ
0 c m0

2n
∣MT∣

2 red E eh−E ' g f e T e− f hT h .

(7.6)

More details on the calculation of the gain are provided in Chapter 5.

7.6.5 Average carrier energies taking place in spontaneous emission

The average energy of a carrier taking part in spontaneous recombination is given as

Ee/h
spon=
∫
0

∞

∑
i=0

N

Rspon E ,T e ,T hE dE

∫
0

∞

∑
i=0

N

Rspon E ,T e ,T h dE
, (7.7)

where the summation is over all sub band pairs.

7.6.6 Heat capacities

The heat capacity is defined as the change of the internal energy of a system with 

respect to temperature.  For the electron gas, the heat capacity is given as

Ce Fe ,Te=
1
Lw
∑
i=0

N
∂
∂T∫0

∞

E Di
eE f eE ,Fe ,T edE , (7.8)

and for the hole gas it is given as

Ch F h ,T h=
1
Lw
∑
i=0

N
∂
∂T∫0

∞

EDi
h E  f hE ,Fh ,ThdE . (7.9)

7.6.7 The effective band gap

In the following work, it  is  useful  to  define the average energy separation  of  the
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electron and hole populations.  This will be referred to as the average electron/hole

energy difference Eg
qwT  , and is given by the band gap energy of the QW plus the

average electron and hole energies, 

Eg
qwT =EgE

e T e , FeE
h Th , Fh . (7.10)

The last two terms in equation 7.10 are calculated from equation 7.7.

7.7 Electron/hole rate  equations

The fundamental rate equation describing the conservation of carrier energy is 

〈∂U
∂ t 〉=〈∂U

∂ t 〉FCA

〈∂U
∂ t 〉inj

−〈∂U
∂ t 〉Recomb

−〈∂U
∂ t 〉Spont

−〈∂U
∂ t 〉Stim

−〈 ∂U
∂ t 〉c->LO

−〈∂U
∂ t 〉c->AC

, (7.11)

where U is the energy density of the carrier gas (Jm-3). This equation states that carrier

energy is conserved.  Energy is gained via FCA, carrier injection and lost via radiative

recombination,  and relaxation via phonon emission.   It is assumed that all heating

events occur upon the carrier gas and that the gas thermalises instantaneously.  The

differentials are described in more detail table 7.1.
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7.8 Heating and cooling mechanisms

7.8.1 Heat capacity

If  equation  7.11 is  solved  in  steady  state,   there  is  no  net  change  of  energy.

Consequently,

〈∂U
∂ t 〉=0 . (7.12)

However, if the simulation is to be solved in the time domain, the total change of

energy density is non-zero.  The expression for change of carrier energy density with

time can be directly solved

〈∂U e/h

∂ t 〉=U t−U t−1

∂ t , (7.13)

where Ut-1 is the energy density of the previous time step and Ut is the energy density
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〈∂U /∂ t 〉 Change of total energy density with time.

〈∂U /∂ t 〉FCA
Increase in energy density due to free carrier absorption 
heating.

〈∂U /∂ t 〉inj
Energy gain via electron injection from bulk.

〈∂U /∂ t 〉Recomb
Recombination heating.

〈∂U /∂ t 〉 Spont
Spontaneous emission cooling.

〈∂U /∂ t 〉 Stim
Stimulated emission cooling.

〈∂U /∂ t 〉 e->AC
Cooling of the electron gas to the LO phonon population.

〈∂U /∂ t 〉 e->LO
Cooling of the electron gas to the lattice temperature via 
acoustic phonon emission.

Table 7.1: Summary of cooling/heating terms.



at the current time step.  The energy density can be evaluated using 7.3.

7.8.2 Free carrier absorption

Free  carrier  absorption  heating  acts  directly  on  the  confined  carrier  gases.   For

electrons, FCA heating is given as 

〈∂U
∂ t 〉FCA

e

= n
0 nqwPH ℏ (7.14)

and for holes it is given as

〈∂U
∂ t 〉FCA

h

= p
0 pqwPH ℏ . (7.15)

More detail on FCA can be found in Chapter 5.

7.8.3 Energy loss via stimulated emission

As carriers radiately recombine, energy is lost from the carrier populations.  This is

modelled using,

〈∂U
∂ t 〉Spont

e

〈 ∂U
∂ t 〉Stim

e

=ESpon
e T RSpontEStim

e T RStim (7.16)

for the electron population and

〈∂U
∂ t 〉Spont

h

〈 ∂U
∂ t 〉Stim

h

=ESpon
h T RSpontEStim

h T RStim (7.17)

for the hole population, where  Rspont and Rstim are the spontaneous and the stimulated

recombination rates, respectively.  These are calculated from the non-parabolic band

structure. ESpon
e/h T  and EStim

e/h T  are average energies of the carriers participating
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in  stimulated  and  spontaneous  emission  recombination.  Note  that  this  energy  is

substantially below that of the average QW carrier energy, so that the average energy

of the remaining carriers increases.

7.8.4 Optical phonon emission

As previously  discussed,  LO-phonon  scattering  is  the  dominant  carrier  relaxation

mechanism in GaInAsN quantum wells (this is also true for GaInAs QWs).  This is

modelled as an energy rate equation

〈∂U
∂ t 〉e/h LO

=U e/h T e\h−U e /h T LO
 LO− e/h


, (7.18)

which describes the carrier gases relaxing towards the hot LO-phonon temperature

TLO, where  LO-e\h is the scattering time.

7.8.5 Acoustic phonon emission

Although LO-phonon emission is the dominant cooling mechanism, the carriers also

decay (to a much lesser extent)  via acoustic  phonon emission.   This is  taken into

account using the following rate equation

〈∂U
∂ t 〉e/h AC

=U e/h T e/h −U e/h T L
AC−e/h

 . (7.19)

where U ke
e/h den T e/h  is  the  energy  density  of  the  electron  gas  at  the  elevated

temperature Te/h and U ke
e/h den T L is what the energy density the electron gas would

be if it were at the lattice temperature. The time constant AC-e/h is the carrier/acoustic
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phonon scattering time.

7.8.6 Shockley-Read-Hall recombination

In Shockley-Read-Hall (SRH) recombination, an electron and hole recombine through

a deep-level on a lattice defect state.  This state  is usually  taken as being midway

between  the  conduction  and  valance  band  edges.   Both  the  electron  and  hole

populations lose a carrier via this  process.  The energy lost can be assumed to be

transferred straight to the lattice as heat.  Therefore, SRH has a heating effect on the

lattice and removes energy from the carrier gases.  The heating effect on the lattice is

modeled as the rate of SRH recombination multiplied by the average electron/hole

energy difference  (The QW band gap plus the average carrier energy of the electrons

and holes is defined earlier)

H l SRH=RSRH
Eg

qwT L . (7.20)

The electron/hole gases lose energy equal to the average energy of an electron/hole

multiplied by the rate of emission and is given by

HSRH
e/h =−

1
2
RSRH E

e/hT L . (7.21)

7.8.7 Auger recombination in the QW

In  Auger  recombination,  an  electron/hole  pair  recombines  and  the  energy  is

transferred to another electron/hole.  This electron/hole then relaxes emitting phonons.

The laser simulator only has one Auger scattering rate.  It is therefore assumed that
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half of the Auger scattering events originate in the electron population and the other

half in the hole population.  When the scattering event occurs, the energy lost to each

carrier gas due to recombination is given as  −1/2RaugE
e/h .  It is assumed that

the excited carrier scatters up out of the QW back into the bulk and does not re-enter

the  QW.   Thus,  the  total  heating  of  the  carrier  populations  due  to  Auger

recombination is given by

HAuger
e/h =−

1
2
RaugE

e/h . (7.22)

The excited carrier which has been ejected from the QW is then assumed to relax in

the bulk to the bottom of the band edge.  Thus the heat Hbulk is given to the lattice

Hbulk=RSRH Eg
qw− Ec/v  , (7.23)

where Ec/v is energy difference between the average carrier energy in the conduction

or valance band and the bulk band edge.

7.8.8 Final electron/hole rate equations

Placing all the above heat sources and relaxation time approximations into 7.11 results

in

dUe

dt
=

H cap
e H SRH

e H Auger
e 

H J
e−EStim

e T R stim−E spon
e T Rspon−

Ue T e−U eT LO
 LO−e

−
U eT e−UeT L

AC−e

−
U eT e−U eT h

 eh


U h T h−U h T e

 eh

. (7.24)
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This equation is a  highly non linear integro-differential equation, where the energy

densities and average energy densities are all integrals (described above).  The most

efficient  way  of  solving  such  an  equation  is  Newton's  method.   In  order  to  use

Newton's method, the equation must be written as an error function.  In this chapter, e

will be used to denote the error.  Thus equation 7.24 can be rewritten as

ee T e ,T h ,T L ,T LO=
−

dU e

dt
H cap

e H SRH
e H Auger

e 

H J
e−E Stim

e T Rstim−E spon
e T Rspon−

U eTe−U eT LO
 LO−e

−
U eT e−U eT L

 AC−e

−
U e T e−U eT h 

eh


U h T h −U h T e
 eh

(7.25)

for the electron population and 

eh T e ,T h ,T L ,T LO=−
dU h

dt
H fca

h H SRH
h H Auger

h

−EStim
h T RSpontESpon

h T RStim

−
U h T h −U h T LO

 LO−h
−

U h T h−U h T L
 AC−h


U eT e−U eT h

 eh
−

U h T h−U h T e
 eh

(7.26)

for the hole population.

7.9 The hot LO-phonon population

7.9.1 The LO-phonon rate equation

As the carriers relax from the bulk states to the confined lasing states, LO-phonons are

emitted.  The rate equation describing the conservation of energy for the LO-phonon

population is given by
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〈∂U LO

∂ t 〉=〈∂U
∂ t 〉e LO

〈∂U
∂ t 〉

hLO

−〈∂U LO

∂ t 〉
ac

. (7.27)

The components of this equation are given in table 7.2.

The rate of decay of optical phonons is described by

〈∂U LO

∂ t 〉
ac

=
U LOT LO−U LO T L

LO−a

, (7.28)

where ULO(TLO) is the energy density of the non-equlibrium LO-phonon population at

temperature TLO, i.e. the elevated temperature.  ULO(TLO), is the energy density of the

hot phonon population when relaxed to the lattice temperature.  In steady state, the net

change of energy is zero.  Thus, the left hand side of equation 7.27 can be set to zero

〈∂U LO

∂ t 〉=0 . (7.29)

When a time domain solution is required, a finite difference scheme in the time 

domain is applied
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〈∂U LO/∂ t 〉 Net change of energy of the LO-phonon population.

〈∂U /∂ t 〉 eLO
Heating of the LO-phonon population by the electron 
relaxation (see section 7.8.4).

〈∂U /∂ t 〉 h LO
Heating of the LO-phonon population by the hole 
relaxation (see section 7.8.4).

〈∂U LO/∂ t 〉ac
Cooling of the LO-phonon population by the decay of LO-
phonons into acoustic phonons.

Table 7.2: Summary of cooling/heating terms for the LO-phonon gas.



〈∂U LO

∂ t 〉=Ut−U t−1

 t
, (7.30)

where Ut is the current LO-phonon density and Ut-1 is the LO-phonon energy density

t seconds ago.  Writing the rate equation out in full gives

eLOT e ,T h ,T L ,T LO=−
U t

LO−Ut−1
LO

 t


U eT e−U e T LO
LO−e


U h T h−U hT LO

LO−h

−
U LO T LO−U LOT L

LO−a

. (7.31)

7.9.2 The hot phonon energy density

The hot phonon energy density,  ULO, is one of the most critical  components of the

model.  In the past, Einstein's model for heat capacity has been used to calculate ULO.

This assumes a quasi-equilibrium situation, where hot phonons occupy the entire 3D

k-space density of phonon states.  Einstein's model assumes N independent harmonic

oscillators, each oscillating at the LO-phonon frequency.  This model gives the energy

density as

U LO=
3N ℏ

V qw  12 1

eℏ / k T LO−1  , (7.32)

where Vqw is the volume of the quantum well.  However, the 2D confined carriers do

not  interact  with  the  entire  3D LO-phonon  k-space.   The  carriers  exist  within  a

continuum of kxy momentum and have discretised kz vectors.  This imposes two limits
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on  the  carrier/phonon  interaction.   Firstly,  the  maximum  kxy vector  that  can  be

generated via intraband scattering is limited by the maximum LO-phonon energy and

the width in k-space of the top of the band.  This is depicted in figure 7.4, where a

carrier at the top of the band loses the maximum possible amount of xy-momentum to

a phonon by relaxing from the maximum positive kxy-vector to the smallest negative

kxy-vector.  Assuming parabolic bands, kxy is given by,

 k xy
max= 2m Eb

ℏ2  2m  Eb−ELO

ℏ2 , (7.33)

where  Eb is the difference in terms of energy between the top of the band and the

bottom (see figure 7.4).

There is also a minimum limit to the generation of phonons via intraband relaxation.

The dispersion curve for LO-phonons is flat - a carrier under 32meV in the band can

not lose energy via LO-phonon emission.  This is depicted in figure 7.5 and described

analytically for parabolic bands as
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Figure 7.4: Maximum kxy vector generated 
by an intraband carrier relaxation.



 k xy
min= 2m ELO

ℏ2 . (7.34)

The second restriction on carrier/LO-phonon interaction is that each band in the QW

exists at a different discrete kz wavevector (i.e. momentum is quantised normal to the

plane.)  Assuming that momentum is completely conserved normal to the plane, this

means  than  only  LO-phonons  with  kz equal  to  the  difference  between  the  kz

momentum of the two bands will be generated. i.e.

k z
LO=k z

band 1−k z
band 2

. (7.35)

Intraband  LO-phonon  scattering  is,  however,  an  order  of  magnitude  faster  than

interband scattering [9].  Thus, far more LO-phonons with kz=0 will be produced than

kz≠0.  Thus, when calculating the energy density of the hot LO-phonon population,
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Figure 7.5: Minimum excited kxy vector due to 
carrier/LO-phonon interaction.



one should consider a 2D flat disk rather than a 3D ball in k-space. Normally, that

would be the end of the story.  However, in narrow wells, momentum is apparently

not conserved normal to the QW [10]. This is because of the uncertainty principle, 

 x   px
ℏ
2 . (7.36)

As the quantum well is narrowed (<35nm for GaInAs), the position of the carriers

become better defined, this means that the momentum becomes less well defined, thus

transitions can occur where momentum is not conserved.  The matrix element used to

calculate the transition probability is multiplied by

∣F qz∣
2=∣∫

0

w

dzm
* z n

* z expiq z z∣
2

, (7.37)

which accounts for this blurring of the interacting states [11].  The result is a blurring

of  the  2D flat  disk  into  a   3D doughnut  shape.   The  k-vectors  partaking  in  the

transitions can be approximated by

q z

2
=

2
Lw

, (7.38)

where  Lw is  the QW width  [11].   The energy density  of the non-equilibrium LO-

phonons  can  now  be  calculated  by  integrating  over  the  volume  of  k-space  they

occupy, multiplied by the density and the Bose-Einstein occupational probability,

U LO T =
ℏLO

23
∫
qxy

min

qxy
max

∫
0

2

N T ddkxy ∫
−qz /2

qz/2

dqz (7.39)

where N(T) is the Bose-Einstein occupation probability given by,
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N T =
1

e
ℏω LO/ kT

−1 , (7.40)

and where q is the width of the disk,  sweeps out the angle of integration, qmin and

qmax are the maximum and minimum vectors of for kxy.  The equation 

N s=
V k

2 /Lm
(7.41)

with m=3 has been used to calculate the density of states. Evaluating equation 7.39 by

integrating  between 0 and 2 gives

U LO T =
ℏLO

22
∫
qxy

min

qxy
max

kxy N T dkxy ∫
−qz /2

qz /2

dqz . (7.42)

At the beginning of a simulation, equation 7.42 is solved numerically from 250K to

500K in 0.05K steps, and the results are stored in a look up table.  This eliminates the

need for a slow numerical evaluation of the integral during the simulation.

7.9.3 Lattice heat flux

The final part of the model is to describe the heat propagating out of the device.  The

lattice heat flux equation as described in Chapter 5 is written again in equation 7.43.

This time, however, the heating terms associated with the QW have been replaced by

energy  relaxation  approximations.   The third  term from the  left  in  equation  7.43

describes the heating due to LO-phonon decay from the hot LO-phonon gas.  The last

two  terms  describe  the  energy  transferred  to  the  lattice  via  carrier  relaxation  via

acoustic phonons,

24



C L

∂T L

∂ t
=∇ k L∇ TH bulk

U LOT LO−U LO T L
 LO−a



Ue T e−U eT L
AC−e


U hT h−U h T L

AC−h

. (7.43)

Equation  7.43 is then rearranged in terms of an error function ready to be solved by

Newton's method,

eLTe ,T h ,T L ,T LO=−C L

T L
t −T L

t−1

 t
∇ k L∇ TH bulk

U LO T LO−U LOT L
LO−a



Ue T e−U eT L
AC−e


U hT h−U h T L

AC−h

.

(7.44)

7.10 Relaxation times used

The relaxation times used in the simulation are given below in table 7.3. 

 The LO-phonon relaxation time is given as a function of lattice temperature.  This 

dependence is given as

τ LO−a=
τ LO

0

12 [ exp0 . 5ℏω LO / k B T L−1 ]−1 . (7.45)

7.11 A simplified model

25

Event Time Reference

e-h 1ps [12]

 LO 8ps [13]

AC-e 1ns [14]

AC-h 0.5ns [14]

LO-e 142fs [15]

LO-h 71fs [15]

Table 7.3: Scattering times used



In the literature, more simplified models are often used, where it is assumed that the

carriers in the quantum well have a kinetic energy of kT.  i.e. they are treated as a 2D

gas and from partition theory, each dimension gives 1/2kT worth of energy.  It is also

commonly assumed that all recombination (dark and radiative) occurs at kT from the

bottom of the band.  The main advantage of this approach is the simplicity of the

model  and  its  good  numerical  stability.   In  order  to  compare  the  more  accurate

simulation performed here with these models,  an option to  turn on this  simplified

model was included.  The simplified set of definitions is

U eT =kT e n , (7.46)

U hT =kT h p , (7.47)

E e/h T =kT e/h , (7.48)

EStim
e/h Te ,T h ,n , p ,ℏ=kT e/h , (7.49)

E spon
e/h =kT e/h  and (7.50)

Ce/h T =k . (7.51)

7.12 Solution of the problem

The set of equations given in sections 7.6-7.10 are a set of highly non-linear integro-

differential  equations.   The  most  straight  forward  method  of  solution,  for  such  a

problem is Newton's method, as described in Chapter  5.  The 1D problem is of the

form (7.52).
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[
∂eL

∂ T L

∂eL

∂T e

∂ eL

∂ T h

∂eL

∂ T LO

∂ee

∂ T L

∂ ee

∂T e

∂ ee

∂ T h

∂ ee

∂ T LO

∂ eh

∂ T L

∂ eh

∂T e

∂eh

∂ T h

∂ eh

∂ T LO

∂eLO

∂ T L

∂eLO

∂T e

∂ eLO

∂ T h

∂eLO

∂ T LO

] [  T L

 T e

T h

 T LO

]=−[
eL

ee

eh

eLO

] (7.52)

One  of  the  most  efficient  ways  to  solve  the  problem  is  a  sparce  matrix  LU

decomposition algorithm.  The algorithms  f01brf() and f04axf() from the Numerical

Algorithms Group (NAG) were used.  F01brf() is a sparse matrix factorisation routine,

which is used to separate the Jacobian into an upper and lower part.  f04axf() is used

to solve for the update Tl,e,h,LO 

T L
k1=T L

k T L
k1 , (Error: Reference source not

found7.53)

T e
k1=T e

k T e
k1 , (7.54)

T h
k1=T h

kT h
k1 , (7.55)

T LO
k1=T LO

k  T LO
k1

. (7.56)

The QW is very small when compared to the rest of the epitaxial device structure.  In

terms of mesh points, around ten points are used to model the QW whereas around

one to two hundred mesh points are used to model the much larger bulk.  Thus, the

matrix  elements  eL representing  the  1D  heat  equation  (i.e.  a  bulk  equation)  far

outnumber those representing the QW.  The Jacobian is typically ~200x200 in size,
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and can be written in short form as

J T=− f . (7.57)

If the 2D heat equation is to be solved, equation 7.57 must be solved for each vertical

strip  of  the  mesh,  and  cross  terms  relating  each  strip  to  its  neighbour  must  be

included.  Equation 7.58 shows the structure of the matrix for the 2D problem, where

An and Bn are the cross terms.

[
J 0 B0

A1 J 1 B1

A2 J 2 B2

A3 J 3 B3

⋱
An Jn

] [
 T0

 T1

 T2

 T3

⋮
 Tn

]=−[
e0

e1

e2

e3

⋮
en

] . (7.58)

A solution was arrived at with fewer than 7 iterations when starting with a bad initial

guess, and within two iterations when a good initial guess was made.  In the following

four sections, the Jacobian elements will be presented.  In order to evaluate equations

7.52 and  7.58 the derivatives which appear in the Jacobians are needed.  These are

given in the next four sections (7.12.1 - 7.12.4).

7Error: Reference source not found.12.1 Lattice equation derivatives

∂eL

∂T L

= ∂
∂T L

∇ kL∇T L H bulk−
1

LO−a

∂U LOT L
∂T L



−
1

 AC−e

∂Ue T L

∂T L

−
1

 AC- h

∂U h T L

∂T L

(7.59)

∂eL

∂T e

=
1

 AC−e

∂Ue T e
∂T e

(7.60)
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∂ eL

∂T h

=
1

AC- h

∂U h T h 
∂T h

(7.61)

∂eL

∂T LO

=
1

LO−a

∂U LO T LO
∂T LO

(7.62)

where 
∂
∂T L

∇ kL∇ T  has been defined earlier.

7Error: Reference source not found.12.2 Electron energy conservation equation

∂ ee

∂T L

=
1

AC− e

∂U eT L
∂T L

(7.63)

∂ ee

∂T e

=−
1
 t

U eT e
t 

∂T e

−
1

LO−e

∂U eTe
∂T e

−

1
AC−e

∂U eT e
∂ T e

−
1
 eh

∂U eT e
∂ T e

−
1
 eh

∂U h T e
∂T e

(7.64)

∂ ee

∂T h

=
1
 eh

∂U eT h 
∂ T h


1
eh

U h T h
∂T h

(7.65)

∂ ee

∂T LO

=
1

LO−e

∂U eT LO
∂ T LO

(7.66)

7Error: Reference source not found.12.3 Hole energy conservation equation

∂ eh

∂T L

=
1

AC− h

∂U h T L
∂T L

(7.67)

∂ eh

∂T e

=
1
 eh

Ue T e
∂T e


1
eh

U h T e
∂ T e

(7.68)

∂eh

∂T h

=−
1
 t

∂U h T h
∂T h

−
1

LO−h

∂U h T h
∂T h

−
1

AC−h

U h T h
∂T h

−
1
 eh

U eT h

∂ T h

−
1
 eh

U h T h

∂ T h

(7.69)
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∂ eh

∂T LO

=
1

LO−h

∂U h T LO
∂T LO

(7.70)

7Error:  Reference  source  not  found.12.4 LO-phonon  energy  conservation

equation

∂ eLO

∂ T L

=
1

LO−a

∂U LO T L
∂T L (7.71)

∂ eLO

∂T e

=
1

LO−e

∂U eTe
∂ T e (7.72)

∂ eLO

∂T h

=
1

LO−h

∂U h T h 
∂T h (7.73)

∂eLO

∂T LO

=−
1
 t

U LOT LO
∂T LO

−
1

LO−e

∂Ue T LO
∂T LO

−
1

LO−h

∂U h T LO

∂T LO

−
1

LO−a

∂U LOT LO

∂T LO

(7.74)

7Error: Reference source not found.12.5 Evaluation of the derivatives

The derivatives of the energy density for the carrier populations are are numerically

evaluated from tabulated solutions of 7.3, stored as a function of n, p, Te and Th.  The

derivatives of the LO-phonon energy density are also evaluated numerically from the

tabulated solution.  When using the simplified solution (equations  7.46 -  7.51), the

derivatives are evaluated analytically.
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7.13 The 1.3m dilute nitride device

This section investigates the impact of the non-equilibrium phonon population on the

operation of the 1.3m lasers described earlier in this work.

7.13.1 The structure

The epitaxy of the 1.3m lasers simulated  here is  the same as those described in

section 3.2.  The device is 300m long, with uncoated facets (R=0.32) and a ridge

waveguide (RW) width of 3.2m.   A 100m wide thermal simulation window was

used to simulate this device.  The device is depicted in figure 7.6.
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Figure  7.6: Laser epitaxial structure 
and etching profile.



7.13.2 Simulation results for the low power 1.3m device – Steady state

In figure 7.7, simulated LI-curves are plotted with and without the inclusion of  the

hot-phonon model.  Below threshold, there is no impact on the LI curves, whilst at

moderate injection levels, the predicted output decreases by ~1mW.  At high injection

currents, the inclusion of the hot phonon model decreases the predicted output power

by up to 4mW.  A super linear divergence of the two predicted output  powers is

observed.  This indicates that importance of including the hot-phonon model becomes

more important the harder a device is driven.

In  figure  7.8,  the  quantum  well  temperatures  corresponding  to  an  LO-phonon

relaxation time of 8ps are plotted as a function of injection current.  The hot-phonon

population is ~10K above that of the lattice temperature.  This temperature difference
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Figure 7.7: Light-current curves generated when the hot phonon 
model is included (8ps) and when it is not  (0ps).



increases as the injection current is increased.  The carrier temperatures can be seen to

'ride' on the LO-phonon temperature.  This is an expected result because the hot LO-

phonon population also passes energy pack to the electron and hole gases through

phonon absorption scattering processes.

Figure  7.9 plots the temperature difference between the hot LO-phonon temperature

and  the  lattice  temperature  for  a  range  of  LO-phonon  relaxation  times.   For  a

scattering time of 10ps, a >18K rise in the LO-phonon temperature relative to the

lattice temperature is observed.  
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Figure 7.8: QW temperatures plotted again injection
current for an 8ps scattering time.



As the injection current is increased, the temperature difference between the carriers

and the hot  phonon population  increases slowly.   This  is  because as the injection

current is increased and the device slowly heats.  This reduces the optical gain, thus

one of the QW carrier cooling mechanisms becomes less efficient, and the carriers

heat up relative to the LO-phonon population.

Figure 7.10 shows, a thermal profile in the QW across the facet of the device when it

is emitting 12mW of output power from the front facet. The centre of the ridge is at

0mm and the ridge extends to ±1.6mm, where the etch trench begins.  The electron,

hole,  non-equilibrium  LO-phonon  and  lattice  temperatures  are  plotted.   The

temperature of the hot-phonon population under the ridge is ~7K higher than that of

the  lattice.   The  elevated  LO-phonon  temperature  corresponds  to  a  high  carrier

injection  rate,  which  generates  a  large  number  of  LO-phonons.  The  carrier

temperatures are only a couple of degrees above the LO-phonon temperature.  The
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Figure 7.9: LO-phonon bottleneck temperature.



electron population is hotter than the hole population, for two reasons.  Firstly, the

hole/LO-phonon  scattering  time  (71fs)  is  far  faster  than  the  electron/LO-phonon

scattering time (142fs),  thus the hole population releases its  energy to the hot LO-

phonon population faster than the electron population does.  Secondly, the conduction

band QW is deeper than the valance band QW, so electrons have further to relax from

the  bulk  states  releasing  more  energy  into  the  electron  population  than  the  hole

population.   Further  away from the  ridge,  where  the  injection  current  is  less,  the

populations approach a quasi-equilibrium distribution.

A typical 2D thermal profile is shown in figure 7.11.  The region of high temperature

at the top of the device is the ridge.  The large flat area of low temperature at the

lower end of the graph represents the substrate, whilst the QWs lie directly under the

35

Figure 7.10: 2D temperature profile across the QW.  The centre of the 
RW is at 0 m as this is a half space simulation. (THeatsink = 300 K.)



ridge, represented by the black line.  The lattice temperature profile in figure  7.10

corresponds to the temperature profile along the black line in figure 7.11.

Figure  7.12,  plots  the temperature difference between the hot  LO-phonon and the

lattice temperature (TLO-TL) as a function of optical output power for different external

heatsink  temperatures.   A super-linear  increase  in  the  temperature can be  seen  at

heatsink  temperatures  above 360K,  which  is  caused by the  more  constricted  LO-

phonon bottleneck. At lower heatsink temperatures (300-360 K), this behaviour is not

observed because the LO-phonon decay time is  shorter at  lower temperatures (see

equation 7.45).  A high lattice temperature increases the carrier temperature, which in
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Figure 7.11: The 2D thermal profile of the device simulated with a front facet 
output power of 12mW.  The black line represents the position of the QWs.



turn reduces the optical gain due to thermal broadening of the carrier distributions.

Therefore, to achieve the same optical output power at a higher heat sink temperature,

a higher carrier density is required.  This implies a larger injection current.  When

pumping  the  device  harder,  the  LO-phonon  bottleneck  becomes  more  severe.

Experimentally, the device shows a decrease in performance for heatsink temperatures

above 360K, which is in part due to the more restrictive LO-phonon bottleneck.

7.13.3 Simulation results for the low power 1.3m device – Time domain

The optical output power from a 1D time domain simulation is shown in figure 7.13

for a bit rate of 10Gb/s .  Simulations with and without the hot phonon model are

shown.  The impact of including the non-equilibrium LO-phonons is to reduce the

peak  optical  power  by  up  to  2mW.   Again,  this  is  due  to  the  elevated  carrier
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Figure  7.12: Phonon bottleneck as a function of front facet 
output power for varying heat sink temperatures.



temperatures, which reduce the optical gain.   The pulse is also delayed and the rise in

the optical power slower when the hot-phonon model is included.

The non-equilibrium QW temperatures for this  example are plotted in figure  7.14.

The hot LO-phonon temperature is seen to increase by up to 3K within the width of

the modulating pulse.  The carrier temperatures are seen to follow the hot LO-phonon

temperature throughout the pulse train, this is because of the short e-LO and h-LO

scattering times.
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Figure 7.13: Time domain response of  optical output 
power to applied voltage pulse train. (THeatsink = 300 K), 
TL=339 K.



The LO-phonon temperature for each QW is plotted in figure 7.15.  The temperatures

are very slightly different due to the slightly different positions within the epitaxy.

QW1 is closer to the ridge i.e. further away from the heat sink than QW2.  Also, each

QW will have slightly different injection currents.  This causes up to 0.5K difference

in the carrier temperatures in the two wells.  Figure 7.16 plots the electron temperature

in each QW.  As expected, it is slightly hotter than the LO-phonon temperature but

follows the same shape.
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Figure 7.14: Time domain response of TLO, Te,, Te  to 
applied voltage pulse train. (THeatsink = 300 K, TL=339 K.)



7.14  Summary

Within  this  chapter,  a  computationally  efficient  hot  carrier/non-equilibrium  LO-

phonon model has been developed.  The model eliminates many of the assumptions

made in previously published more simple rate equation models, whilst holding on to

their  numerical  attractiveness.   Simplifications  used  in  earlier  models  such  as

assuming  the  lasing  energy  is  kT above  the  band  edge  have  been  replaced  with
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Figure 7.15: The temperature of the LO-phonon 
population in each QW.

Figure 7.16: The electron temperature in each QW.



numerical  results  from  non-parabolic  band  calculations  using  full  Fermi-Dirac

statistics.  The lattice heat equation is solved in 2D along with the electron/hole/LO-

phonon energy balance  equations  to  obtain  a  four-temperature model  of  the  QW.

Using this newly developed simulation tool the impact of hot phonons on a 1.3m

edge-emitting dilute nitride laser has been investigated. The impact of the LO-phonon

bottleneck has been found to be most significant under the ridge, where the injection

current is largest.  At moderate injection levels, the predicted output of the 1.3m

device decreases by ~1mW due to the hot carrier effect.  At high injection currents,

the inclusion of the hot phonon model decreases the predicted output power by up to

4mW.  A super-linear divergence of the two predicted output  powers is  observed,

indicating that including the hot-phonon model becomes more important the harder a

device  is  driven.   Modulation  of  the  LO-phonon  and  QW  carrier  population

temperatures  is  observed  under  high  speed  large-signal  modulation.   These

temperature fluctuations are seen to change the position of the optical peak power and

optical pulse shape.

The impact of hot phonons in dilute nitride devices is particularly large due to the

large conduction band offset caused by the interaction of the conduction band wave

function  with  the  nitrogen  level.   In  order  to  accurately  model  the  modulation

response and thermal roll-over in QW EELs, it is therefore essential to include hot

phonon effects in device models.
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