
A laser heat model Chapter 5

The implementation of a drift diffusion based thermal model

5.1 Introduction

The optimisation  of optoelectronic devices can be costly,  requiring multiple  MBE

growths and hours of processing.  A way to avoid this expensive process is to use

truly predictive device simulation tools firstly to understand the physical processes

within the device and then to optimise the device design.  One of the most important

aspects of a device simulator is its ability to accurately predict the device temperature.

Almost  all  material  parameters  depend  on  device  temperature,  mobility,  thermal

conductivity, gain and band gap energy to name but a few.  It is therefore essential to

accurately include thermal effects if realistic models are to be created.

In this chapter, our isothermal device simulator is extended to include thermal effects.

The  thermal  device  equations  are  derived,  discretised  and  then  implemented.  A

material database is designed and implemented to enable material parameters to be

quickly calculated as a function of temperature.  The interaction of the electrical and

thermal meshes is investigated.  Finally, various numerical stabilisation techniques are

evaluated to ensure the efficient and stable solution of the electro-thermal model.
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5.1 The lattice heat equation

The classical description of heat flow in solids was first published by Fourier in his

paper “On the Propagation of Heat in Solid Bodies” in 1807.  Fourier's heat equation

for solids is usually written as

SL r , t =−L ∇T Lr , t  , (5.1)

where  SL is the heat flux density,  kL is the lattice thermal conductivity and TL is the

lattice temperature.  This equation states that the heat flux density is proportional to

the gradient of the temperature multiplied by the thermal conductivity.

To  derive  the  more  general  heat  diffusion  equation,  the  conservation  of  heat  is

considered.  If a volume element has a heat flux  SL flowing through its  walls, the

integral of this energy flux out of the volume element plus the total change in energy

stored within the unit volume is equal to the total heat generation within the volume.

This may be written as [1]

∮
A

SL r , t⋅dA=− ∂
∂ t
⋅∫

V

L c LT L dV∫
V

H dV , (5.2)

where t is time,  L  is the density of the material,  cL is the specific heat at a constant

pressure and H(T) is the rate at which heat is generated per unit volume.  Then using

Gauss's law

∮
A

SL dA=∫∇ SL dV (5.3)

with 5.1,  5.2  and differentiating with respect to volume, the heat diffusion equation

is obtained as
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L cL

∂T r 
∂ t

=∇⋅ L∇ T r H T , r  . (5.4)

The term on the left hand side of the equation describes heat storage.  The two terms

on the right hand side describe the heat flow into and out of a unit volume and heat

generation or loss within that unit volume.  As long as the device is at steady state, the

time dependence can be neglected, i.e.

∂T L

∂ t
=0 .  (5.5)

Thus, equation 5.4 becomes,

0=∇⋅ L∇T LH , (5.6)

which is the steady state lattice heat equation.
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5.2 Thermal boundary conditions

A key  aspect  of  solving  the  heat  equation  is  the  choice  of  the  correct  boundary

conditions.  A typical 1.3m ridge waveguide (RW) laser diode is shown below  in

figure 5.1.  Thermally, there are three types of boundary conditions which can be used

to model such a problem - Dirichlet, Neumann and mixed conditions.  These boundary

conditions are described in the following section.

5.2.1 Neumann boundary conditions

A  Neumann  boundary  condition  sets  the  value  of  the  derivative  at  the  material

interface. In this case, it is used to force the heat flux across an interface to zero.  One

place where such a boundary condition might be applied is the interface between the

air and the gold in figure  5.1.  To achieve zero heat flux across the interface, the
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Figure  5.1: An SEM image of a 1.3m laser diode.   (Image

courtesy of Chalmers University of Technology, Sweden.)
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gradient of the temperature must be 0 normal to the interface, i.e.

S⋅n=k  n⋅∇T =0 , (5.7)

where n is a unit vector normal to the surface.  For this to be true, the temperature

on either side of the interface must be forced to be the same.

5.2.2 Dirichlet boundary conditions

The Dirichlet boundary condition sets the temperature at the edge of the simulation

window to  a  constant  value.   This  would  be  used  to  model  the  interface  of  the

substrate  with  a  stabilised  Peltier  cooler  or  heat  sink  with  a  very  low  thermal

resistance.

5.2.3 Mixed boundary conditions

Mathematically, mixed boundary conditions describe a boundary where the boundary

conditions change along the edge of the solution space.  These boundary conditions

can be used to model a heat sink without the computational overhead of extending the

mesh over the entire heat sink.

Figure  5.2 depicts  the device heat  sink  interface,  where  T1 is  the  last  mesh point

within the device, T3 the external temperature of the heat sink (commonly set to 300K)

and  T2 a temperature point on the boundary between the heat sink and the device.

Temperature T2 must be calculated.
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By forcing conservation of heat flux normal to the interface,

qheat sink⋅n=qdevice⋅n , (5.8)

Fourier's equation for the heat sink-device interface may be written as

−k device

∂T device

∂ x
=−kheat sink

∂T heat sink

∂ x
. (5.9)

Writing in terms of T1, T2 and T3, this gives

−k d

T 2−T 1

 d
=−k h

T 2−T 3

 h
, (5.10)

where  h is the length of the heat sink,  d is the distance between the two mesh

points closest to the heat sink, kd is the thermal conductivity of the device and kh is the

effective thermal conductivity of the heat sink.  The equation may be rearranged to

give the temperature T2

T 2=
T3 k h dT 1 h k d

kd  hk h d
. (5.11)

kh is calculated from the heat sink thermal resistance using

k h=
 h

Ath Rth
, (5.12)

where Ath is the contact area and Rth (Kelvin/Watt) is the thermal resistance of the heat

sink.  The effective conductivity of the heat sink kh is much higher than the thermal
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Figure 5.2: Device heat sink contact.



conductivity of the material from which the heat sink is made.  This is because the

Neumann boundary condition assumes a 1D heat flux.  In reality, however, the heat

sink is a 3D structure with 3D heat flow. Thus,  heat escapes from all sides of the heat

sink not just one as the equation suggests.

Although the heat sink can be modelled in this way, there is significant lateral heat

flow within the first few microns of the heat sink.  This lateral heat flow spreads the

heat across the top of the device and alters the thermal profile within the device itself.

The mesh was therefore extended over the first few microns (~2-3m) of the heat sink

in order to include this effect.

5.3 Discretisation of the thermal problem

The lattice heat equation (5.6) must be discretised before it can be solved

0=∇⋅∇ TH . (5.6)

In 1D the discrete form of the derivative of the heat flux (in equation 5.6) is

∂
∂ x

⋅ ∂T
∂ x =

−k1

T1−T 0 
 x1

k2

T 2−T 1 
 x2

 x1

2

 x2

2

O (5.13)

where, T0,1,2  and k0,1,2 are the temperatures and thermal conductivities associated with

calculation  cell   0,  1  and 2,  respectively  (see  figure  5.3).   Equation  5.13 can  be

rewritten as
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∂
∂ x

⋅ ∂
∂ x

=
2 x2 k 1 T 0−2 k 1 x2k2 x1T12k2  x1 T 2

 x1 x2 x1 x 2

O , (5.14)

where  O is  the remainder due to the imperfect approximation of  5.14.   The same

procedure can be repeated in the y direction and substituted into equation 5.6, forming

the 2D discretised heat equation for a mesh with a variable cell size

2 x2 k1 T 0−2k 1 x 2k2 x1T 12k 2 x1 T 2

 x1 x2 x1 x 2



2 y2 k3 T 0−2 k3 y2y2  y1T12k4  y1 T 2

 y1 y2  y1 y2

H=0
. (5.15)

It is worth noting that the derivative is often incorrectly evaluated, by removing the

thermal conductivity term k, from inside the divergence, i.e.

∇⋅∇T≠ ∇⋅∇T . (5.16)

5.4 Coupled iterative solution of the electrical and thermal problem

The  solution  method  chosen  was  a  coupled  iterative  method,  whereby  the  heat

equation is solved outside of the main Newton solver for the electrical equations.  The

electrical  and  thermal  solvers  are  run  after  one  another  consecutively  until
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Figure 5.3: An example of a calculation mesh.



convergence is achieved.  This was found to be a stable and robust method for the

solution of the electro-thermal problem.

5.4.1 The 1D problem

In order to solve the 1D thermal problem, the electrical solver is first called and run to

convergence.  The heat sources and thermally dependent parameters are then updated.

The thermal solver is then run until convergence and passes the thermal profile back

to the electrical solver, which updates the thermally dependant electrical parameters.

The process is then repeated until a self consistent solution is found.  A flow diagram

of the solver is shown in figure 5.4.  This usually takes up to ten iterations back and

forth between the electrical and thermal solvers to obtain an extremely well converged

solution.  In the latter stages of solution, the individual solvers converge very quickly

because the initial guess is close to the correct answer.  Thus, the whole process only

takes  two  or  three  times  as  long  as  an  isothermal  simulation  (i.e.  where  the

temperature in the device is assumed to be uniform and constant).
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5.4.2 The 2D problem

Once the 1D simulator has been run to convergence the result is used as an initial

guess for the 2D simulator.  The electrical solver solves the 2D electrical problem in

one large sparse matrix.   This  takes a considerable time to build and solve.   The

problem also takes far more iterations to solve than the 1D problem. Thus, it was

found computationally  wasteful  to  run  the  electrical  solver  to  convergence before

updating  solving  the thermal  problem.   It  is  more efficient  to  solve  the electrical

solver for a few iterations (~6) and then solver thermal problem fully before returning

to the electrical problem.  The thermal solver only takes one or two iterations to fully

converge.   By using this  approach, the slow electrical  solver does not  waste time

solving for an inaccurate thermal profile.

5.5 Solving the 2D thermal problem
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Figure  5.4:  Flow  diagram  of  the  coupled

solution method.



5.5.1 Alternating Direction Implicit methods (ADI)

The Alternating Direction Implicit method was evaluated as a solution method for the

thermal  problem.   In  ADI,  a  2D  problem  is  solved  by  solving  1D strips  of  the

problem.  The solver scans the problem space solving 1D strips in one direction (e.g.

vertical), followed by 1D strips in the other direction (e.g. horizontal). This process is

repeated until convergence is reached.  This method is commonly used in the solution

of optical and electrical problems.  The advantage of this method is that the entire

matrix must not be solved at once, but the disadvantage is that it is slow due to its

iterative nature. For the solution of the heat equation, ADI was found to be very slow

– in part since it is hard to give a good initial guess for the thermal problem.

5.5.2 Gaussian elimination

By writing equation  5.15 for every mesh point, a set of linear equations is formed.

Although it is possible to solve linear equations via Gaussian elimination, this would

remove any possibility  of extending the thermal model  later  to include non linear

terms (e.g. non-equilibrium heating mechanisms in the QW).  

5.5.3 Newton's method

One of the most powerful methods used for the solution of both linear and non-linear

equations  is  Newton's  method.   To  implement  this  method,  an  error  function  is

defined,

∂
∂ x

k
∂
∂ x

TH=W T  . (5.17)
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The equation has been solved when W(T)=0.  The derivative of 5.17 with respect to T

is given as W'(T).  From figure 5.5, it can be seen that 

W ' T 0=
W T o
T 0−T1

. (5.18)

This can be rearranged to give

T 1=T 0−
W T 0 
W ' T 0 

, (5.19)

where T1 is a guess closer to the solution of the problem.  This process is repeated

until a sufficiently small error is obtained (see figure 5.5). 

Newton's method can be extended to systems of equations, by rewriting equation 5.18

in matrix form

[ ∂W T 
∂T ][T ]=[W ] . (5.20)

This matrix equation is solved to obtain the matrix [T],  which is then subtracted
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Figure  5.5: An example  of  error  W(T) plotted

against T [1].



from the matrix [T].  This process is repeated until convergence is achieved.

5.5.4 Solving the 1D heat equation using Newton's method

To solve the heat equation in  1D using Newton's  method,  the discretised form of

equation  5.6) must be written as an error function

2 y2 k3 T j−1−2 k3 y2y2 y1T 12k 4 y1 T j 1

 y1 y2  y1 y2

H=W j T  .

(5.21)

The derivative with respect to temperature for each mesh point must then be taken, 

d j=
∂W j T 
∂T j−1

=
2  y2 k3

 y1 y2  y1 y2

(5.22)

a j=
∂W j T 
∂T j

=
−2 k3 y2y2 y1
 y1 y2  y1 y2

(5.23)

b j=
∂W j T 
∂T j1

=
2k 4 y1

 y1 y2  y1 y2

(5.24)

The set of equations 5.21-5.24 can be written for every mesh point 0≤j<M

[
a 0 b 0 ....... ... .. 0 0 0 0
d 1 a 1 b 1 ..... ... ... 0 0 0

d 2 a 2 b2 ...... 0 0
..... d 3 a 3 b3 ..... .. 0

. . ⋱ ⋱ ⋱ . .
0 ..... dM−4 aM−4 bM−4 ....
0 .. ... d M−3 aM−3 bM−3 ....

0 0 .. ... dM−2 aM−2 bM−2 ....
0 0 0 .. ... d aM−1 bM−1

][
T 0

T 1

 T 2

T 3

.
T M−4

T M−3

T M−2

T M−1

]=[
W 0

W 1

W 2

W 3

.
W M−4

W M−3

W M−2

W M−1

] (5.25)

For a Dirichlet boundary condition, at mesh point 0 or M-1, the following derivatives

are used
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d-1=0 (5.26)

bM=0 (5.27)

respectively.   For a Neumann boundary condition,  the temperature in  the cell  just

outside the mesh d-1 or  dM is the same as the temperature in the cell just in side the

mesh.  For fast  convergence, the derivative in cell  d0 or  dM-1 must be modified to

reflect this.  Thus, for Neumann conditions at j=0

a0=
2 y1 k3

 y1 y 2 y1 y2

−
2 k3 y2y2 y1

 y1 y2 y1 y 2

(5.28)

or in cell j=M-1

bM−1=
2k 4 y1

 y1 y2 y1 y2

−
2 k3 y2y2 y1

 y1 y2 y1 y2

. (5.29)

Equation 5.25 is a tridiagonal sparse matrix, which is solved for the update [T].  This

[T]  is  then  added  to  the  initial  guess  for  [T]  and  the  process  is  repeated  until

convergence is  achieved.   Convergence is  defined as  when the  summation  of  the

moduli of the error functions is smaller than a predefined error E.

∑
n=1

N

∣W i∣E . (5.30)

For a typical simulation, E was set to 1x10-6.

5.5.5 Solving the 2D heat equation 
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For the 2D heat equation 5.6 to be solved, equation   5.25 must be solved for each

vertical strip of the mesh and cross terms relating each strip to its neighbour must be

included.  Equation 5.31 shows the structure of the matrix for the 2D problem, where

An and  Bn are the cross terms and Ji is equal to the Jacobian in 5.25 for each strip.

The resulting Jacobian is a pent-diagonal matrix.

[
J 0 B0

A1 J 1 B1

A2 J 2 B2

A3 J 3 B3

⋱
An Jn

] [
 T0

 T1

 T2

 T3

⋮
 Tn

]=−[
f 0

f 1

f 2

f 3

⋮
f n

] . (5.31)

5.6 Meshing

The mesh on which the thermal problem is solved must be chosen correctly to achieve

an accurate and efficient solution.   There are two approaches.  The first and most

commonly used approach is to use two meshes - a fine mesh for the electrical problem

and a coarser mesh for the thermal problem.  The heat sources are interpolated from

the electrical mesh to the thermal mesh and temperatures are interpolated back to the

electrical mesh.  The second approach is to use the same mesh for the electrical and

thermal  problem.   This  has  the  advantage  of  not  requiring  interpolation  and  the

disadvantage of using the very fine electrical mesh for the thermal problem.  In the

following section, both approaches are implemented and compared.

5.6.1 Interpolating between the electrical and thermal meshes

15



The  use  of  independent  electrical  and  thermal  meshes  allows  both  meshes  to  be

independently fine tuned.  The temperature varies relatively slowly as a function of

position.   Thus,  a  linear  interpolation  algorithm  can  be  used  to  interpolate  the

temperature profile between the thermal and electrical meshes.  However, due to the

complex epitaxial structure of a laser diode, the heat sources do not vary smoothly.

This is especially true at heterojunction interfaces and around the QW.  Therefore, to

interpolate the heat sources between the meshes, a different interpolation algorithm

must be used.  One method is to use the weighted mean of the heat sources.  Within a

thermal mesh square, the weighted mean may be written as

H i , j=∑
jj=0

Me

∑
ii=0

Ne f i , j , ii , jj⋅H ii , jj

Ai , j

, (5.32)

where Me and Ne are the number of points on the j and i axes of the electrical mesh, f

is a function which is equal to the area of the electrical mesh square which lies within

the thermal mesh square, Hii,jj is the heat source at point ii,jj on the electrical mesh and

Ai,j  is the area of the thermal mesh square at i,j.  To evaluate f for each thermal mesh

point, the surrounding area in the electrical mesh must be searched, and for every

electrical mesh point,  it  must  be determined how much of the cell  lies within the

thermal cell.  This process is depicted in figure 5.6.
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Due to the amount of searching and calculation required to evaluate f, this algorithm

was found to be very slow.  Another problem found with the interpolation method is

that the electrical problem is very strongly dependent on temperature.  For example,

carrier  density,  mobility,  gain  and  stimulated  recombination  are  temperature

dependent as are many other parameters.  Thus, significant errors can be introduced

into the model by linearly interpolating the temperature.

5.6.2 Using the same electrical and thermal mesh

If the thermal mesh points are made to coincide with the electrical mesh points, no

interpolation is required.  However, the thermal problem often needs to be solved in

regions extending beyond the electrically active regions, which include the substrate,

contacts, heat sink and etched trenches.    Thus, the thermal mesh was extended past
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Figure  5.6: An example of an overlapping electrical and

thermal  mesh.   The  black  mesh  represents  the  fine

electrical mesh, while the blue mesh represents the thermal

mesh.  The blue square represents the overlap of a thermal

cell with the electrical cells.



the bounds of the electrical mesh giving a hybrid thermal mesh.  This approach was

found to be the most efficient and most stable.

5.7 The materials database

During  the  initialisation  of  the  original  isothermal laser  simulator,  the  material

parameters were read directly from a materials database for each mesh point.  After

this,  the constants  (e.g.  mobility)  were not  changed.   Thus,  there was no need to

maintain a copy of the complex polynomials describing the material  parameters in

memory.  If the simulator were to be made temperature dependent, material constants

such as mobility and thermal conductivity would have to be updated as the internal

temperature changed during the course of the simulation.  Rereading the data from the

database on disk  at  every mesh point  was a  very slow process.   Consequently,  a

system had to be developed for storing the material parameters in memory from which

the  materials  constants  could  be  recalculated  quickly  and  efficiently.   The  class

structure of this storage system is shown  in figure 5.7.  On initialisation of the laser

simulator, the material database is read for each material layer. A class structure is

then dynamically generated and populated using the material constants.  A material

class is associated with each epitaxial layer (figure 5.7). The material class contains

an  array  of  class  matparam,  one  for  each  material  parameter  (e.g.  thermal

conductivity,  mobility,  etc.).   Each  matparam class  contains  the  parameters  to

describe the material parameter as a function of material  composition,  temperature

and doping density.   When a material  parameter is  required for a mesh point,  the

function get_value is called and returns the required material parameter.
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The  temperature  dependences  of  the  material  models  had  to  be  found  and  the

materials database routines had be rewritten to handle the data.  The file format used

to store the materials data base was kept broadly compatible with CONAN, a first

generation laser simulation tool [2] written by the University of Nottingham and the

Universidad Politécnica de Madrid.   Another feature of the new database was the

ability of the database files to accept comment lines.  Thus, a list of references as to

where in  the literature the parameters  came from could be kept  with the material

parameters.

5.8 Material models

5.8.3 Bulk carrier densities

Boltzmann statistics  are used to  model  the 3D carrier  densities.   The temperature

dependent carrier density for electrons is given as
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Figure  5.7: A simplified diagram describing the structure and inheritance of the

materials database classes.



n=N c expF n−E c

k T e
 , (5.33)

and for holes as

p=N v exp F v−Ep

k T h
 . (5.34)

The  effective  density  of  states  also  varies  as  a  function  of  temperature  for  the

conduction band

N cT e=2  2 mn
* k Te

h2 
3 /2

, (5.35)

and the valance band

N p T h=2  2 m p
* k T v

h2 
3 /2

. (5.36)

5.8.4 Confined carriers

The QW covers a few nanometres vertically.  However, due to the very fast carrier

scattering rates (femtoseconds), it is unrealistic to have a carrier temperature profile

across the QW.  The lattice temperature is averaged over the width of the QW to give

a single QW temperature,

T qw=
1

Lqw

∫
0

Lqw

T l  ydy . (5.37)

In this model, the carrier temperature is assumed to be the same as lattice temperature

(TL). (This assumption is investigated in detail later.)  When parabolic bands are used

to simulate the carrier densities, the following analytical formulae are used
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nwF nw ,T qw=k T qw∑
ic=1

N cb

ic
2D ln 1exp [Fnw−E c , ic/ k T qw]  , (5.38)

pwF pw ,T qw=k T qw∑
iv=1

N vb

iv
2D ln 1exp [F pw−E c , iv/ k T qw] . (5.39)

These vary as a function of the average QW temperature.  When the assumption of

parabolic bands is not used, the electron and densities in the QW are calculated using,

n F e ,T qw=∑
i=1

N c

∫
Emin

E top

i
eE f e F e ,T qwdE (5.40)

and

p Fh ,T qw=∑
i=1

N v

∫
Emin

E top

i
hE [1− f h Fh ,T qw]dE , (5.41)

where Ncb/vb is the number of conduction/valance bands in the QW and e/h(E) is the

2D energy density of states in the conduction/valance band. It is a numerical function

calculated from the band structure and includes a factor of two to account for spin

degeneracy.  The total  2D carrier density is divided by Lw to give the QW carrier

density in m-3.

The process of calculating the carrier density from the band structure, quasi-Fermi

level  and  temperature  requires  one  integration  per  subband  (equations  5.40-5.41).

Numerical integration is a slow process.  For this reason, the carrier density is only

calculated  once  and  stored  to  disk  in  a  look  up  table  as  a  function  of  carrier

temperature and quasi-Fermi level.   At simulation time, the simulator reads the table

and performs a 2D interpolation to calculate the correct carrier density.  Two look up
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tables are calculated, one for the electron population and one for the hole population.

5.8.5 The intrinsic carrier density

The  intrinsic  carrier  density  must  be  known  to  calculate  the  SRH  and  Auger

recombination rates.  The intrinsic carrier density is a function of temperature.  Using

Maxwell-Boltzmann statistics ni(T) is given as

n i T =N c N v e−Eg /2kT . (5.42)

5.8.6 Low-field mobility model

The low-field mobility model proposed in [3] is also used in this work.  The low-field

mobility is given by

LF N ,T =min
max−min

1 N /N ref 
 , (5.43)

where  min  is  the minimum mobility,  max  is  the maximum mobility, N is the total

doping density (i.e. Na+Nd), Nref is a reference doping level and  is a constant.  All of

these parameters can vary as a function of temperature, so the following model is used

to model their temperature dependence

 T =0 T
300 

0

. (5.44)

When the average drift velocity is far below the Brownian velocity, the influence of

the field on the mobility may be neglected [4], as in this case.  A table of parameters

may be found in [4].
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5.8.7 Lattice thermal conductivity

The lattice thermal conductivity in semiconductor materials varies as a strong function

of temperature and alloy content.  Near room temperature, the variation of the thermal

conductivity of a binary compound can be expressed as

LT =L300K  T
T 0 



, (5.45)

where  T is  the  temperature,  T0 is  a  normalising  constant,  kL(x,y) is  the  thermal

conductivity and   describes the temperature dependence of the material.  Table 5.1

lists the thermal conductivities for several binary alloys and metals.
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Material L (W/Kcm) T0 k Reference

GaAs 46 300.0 -1.25 [5]

InP 68 300.0 -1.4 [5]

AlAs 80 300.0 -1.37 [5]

InAs 27.3 300 -1.1 [5]

GaP 77 300 -1.4 [5]

AlN 285 300 -1.577 [5]

SiC-6H 490 300 -1.61 [5]

Al2O3 28 300 -1.0 [5]

SiO2 1.38 300 0.33 [5]

Cu 400.1 300.0 - [6]

Au 316.9 300.0 - [6]

Polyethylene 0.0017 300.0 - [7]

BCB 0.2 300 - [5]

Table 5.1: Lattice  thermal conductivities for binary alloys and
other common materials used in the simulator.



The thermal conductivity for ternary alloys can be calculated using the binary values

and a bowing parameter (see table 5.2)

 300
AB  x= 1−x

300
A 

x
 300

B 
1−x ⋅x

C ABC 
-1

. (5.46)

The temperature dependence of the thermal conductivity is interpolated between the

binary alloy elements using the expression

AB=1−x ⋅Ax⋅B . (5.47)

A similar, but slightly less complete model has been proposed in [4].

5.8.8 Specific heat capacity

Specific heat capacity is taken as a polynomial without any temperature dependence,

values for common materials used in optoelectronic devices are given in table 5.3.
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Material Ck Reference

AlGaAs 3.3 [5]

InGaAs 1.4 [5]

InAlAs 3.3 [5]

InAsP 3.3 [5]

GaAsP 1.4 [5]

InGaP 1.4 [5]

Table  5.2:  Bowing  parameters  used  in  calculating
thermal  conductivities  of  common  materials  used  in
optoelectronics.



The following formula was used to interpolate between the binary materials 

cL
AB=1−x⋅cL

Ax⋅cL
B . (5.48)

5.8.9 Material density

In transient simulations the material densities are required to calculate the heat stored

per unit volume.  This is used in the left hand side of equation  5.6.  The values for

density were taken from [8]

Vegard's law is assumed to hold.  Thus, the following formula was used to interpolate

between the binary materials 

L
AB=1−x ⋅L

Ax⋅L
B . (5.49)
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Material C300 (J/K kg) Reference

GaAs 322 [5]

AlAs 441 [5]

InAs 394 [5]

InP 410 [5]

Table  5.3:  Specific  heat  capacities  for  common
materials used in optoelectronic devices.

Material 300 (g/cm3) Reference

GaAs 5.32 [8]

AlAs 3.76 [8]

InAs 5.667 [8]

InP 4.81 [8]

Table  5.4:  Material  densities  for  common  materials
used in optoelectronics.



5.8.10 Elastic constants (C11,C12,C44)

The elastic  constants  (C11,C12,C44)  are used in  the  more  advanced thermal  models

(described  later)  and  are  also  used  in  calculating  material  strain.   The  values  of

C11,C12 and C44 are taken from  [9] .

5.8.11 Other parameters

Some other  material  parameters  used within the thermal  model  (either  within  this

chapter or in the more advanced thermal models in later chapters) were introduced

into the database and described using polynomials of the form

Z x , y=∑
i=0

Y

∑
j=0

X

Cij xi y j , (5.50)

where Cij are constants, xi and yj material compositions raised to the power of i and j

respectively.  These parameters include:

● Average atomic spacing 

● Relative atomic mass

● The number of atoms per lattice base

5.8.12 Bulk spontaneous emission

Spontaneous emission is  the process by which an electron in the conduction band
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Material C11x1010 (N/m2) C12x1010  (N/m2) C44x1010  (N/m2) Ref

AlxGa(1-x)As 11.88+0.14x 5.38+0.32x 5.94-0.05x [10]

InP 10.11 5.61 4.56 [11]

Table 5.5: Polynomials describing elastic constants



recombines  with  a  hole  in  the  valence  band,  emitting  a  photon.   This  process  is

described in more detail in Chapter 2.  In bulk semiconductors, the rate of this process

is described by

RSpont=Bnp−ni
2 , (5.51)

where (in steady-state)  B is the capture rate [12].  Although  B is not taken to be a

temperature dependent parameter, RSpont is affected by the temperature dependence of

n, p and ni.  For bulk materials, RSpont is very low, since the np term in equation 5.51 is

small.  The value used in bulk AlGaAs is given in table 5.6.

5.8.13 Bulk Shockley-Read-Hall (SRH)

SRH recombination describes the recombination of electrons and holes at deep level

defects.  The energy is released to the lattice as phonons.  The equation describing this

process is given by

RSRH=
np−ni

2

 p0 nni  n0  pni 
, (5.52)

The capture rates p0 and p0 used are given in table 5.7.

Although the capture rates are not temperature dependant, the overall  rate of SRH
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Capture Rate Value (m3s-1) Reference

B 1.7x10-16 [13]

Table 5.6: Bulk Spontaneous Emission.



recombination  is  temperature  dependant.   In  high  quality  materials  such  as  those

required for lasers, bulk SRH recombination rates are low.

5.8.14 Bulk Auger recombination

The Auger recombination rate is given by [4]

RAuger=C n nC p p np−ni
2 . (5.53)

The  Auger  recombination  coefficients  are  parametrised  as  temperature  dependant

parameters using [15,16]

C n , p=C 0 exp [ E0

k B  1
T
−

1
T 0 ] . (5.54)

The coefficients  C0,  E0 and  T0 are  given in  table  5.8.   These were obtained from

numerical fits to experimental and theoretical calculations.

5.8.15 Auger and SRH recombination in the quantum well 
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Material system Cn,p0  (m6s-1) E0 T0

GaAlAs 4.22x10-42 [15] 0.0404 300.0

Table 5.8: The Auger recombination coefficients used within the device simulator.

Capture Rate Value (ns) Reference

p0 10 [14]

n0 10 [14]

Table  5.7:  SRH  Capture  rates  used  in  the  device
simulator.



It is usual to fit the simulated L-I curves to experimental data by varying the QW

Auger  and  SRH recombination  constants.   Auger  recombination  in  the  QW  is

described by

Rqw
Auger=Cn

qw nC p
qw pnp−ni

2 (5.55)

where

Cn=1x10−41 m6 s (5.56)

and

C p
qwT =C p0

qw [1T−T 0
n ] (5.57)

with C0=1x10-28 m6s, =5x10-4 and n=2.05, T0=350K.  The SRH recombination rate for

the QW is given by

RSRH=
np−ni

2

 p0 nni  n0  pni 
. (5.58)

The capture times used are given in table 5.9.

The fitting to experiment was performed by J. J. Lim as part of the EU-Project FAST-

ACCESS (IST-004772).

5.8.16 Maximum temperature

If  a  device  is  simulated  far  into  roll-over,  very  high  device  temperatures  can  be
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Capture Rate Value (ns)

p0 6

np 6

Table  5.9:  SRH Capture  rates  used  in
the device simulator.



calculated (TL>1000K).  At such high temperatures, the device would quickly degrade

and  die  through  defect  formation.   This  regime  is  of  interest  when  investigating

effects such as catastrophic optical damage (COD). It is, however, not of immediate

interest in every day device design and optimisation.  Furthermore, although the laser

solver  is  stable  enough  to  solve  the  problem  during  roll-over,  it  requires  many

iterations  and the material  models may not hold – thus bringing into question the

validity of the results.  Therefore, the melting point of gold (1337K) [17], which is

commonly  used to  form the  top  contact  and wire  bond was  set  as  the  maximum

simulation temperature.  If such a temperature is calculated at any point within the

mesh, the simulation is stopped.  Thus, no computational time is wasted on solving

for temperatures far outside the devices operating regime.

5.9 The carrier transport model

5.9.1 Thermodynamic treatments and hydrodynamic models

The two key approaches used to derive the heating terms related to current flux within

devices are the thermodynamic and hydrodynamic approaches. The thermodynamic

approach was originally proposed by Wachutka [18-20] and is based on irreversible

thermodynamics.  The model takes as its starting point the phenomenological current

relations and makes use of Onsager's relations to describe the heat flux densities along

with the principle of local conservation of energy.  The model describes a system

close to equilibrium, where Onsager's relations and Maxwell-Boltzmann statistics are

valid.  The model also depends on the correct evaluation of the thermoelectric powers

for electrons and holes.
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The hydrodynamic model  [21] takes as its  starting point  the Boltzmann Transport

equation  (BTE).   Many  methods  have been  proposed for  solving  the  BTE.   The

Monte-Carlo  method  provides  the  most  detailed  solution  method,  but  is

computationally too slow for day-to-day device design and optimisation [22].  In the

hydrodynamic model, a moment expansion of the BTE is taken, giving expressions

for carrier continuity and conservation of momentum and energy, which are derived

from  first  principles.   This  approach  has  been  widely  used  for  decades  in

semiconductor  modelling  (e.g.  MINIMOS  [23]).   The  model  is  more  readably

expendable to FD statistics and for the inclusion of vector temperatures [24] , tensor

masses [24] and multiple sub bands.  Thus, the moment expansion of the BTE is more

suitable for systems far away from thermal equilibrium, as is often the case for laser

diodes.  Under certain conditions (e.g. close to equilibrium), the equivalence of the

thermodynamic and hydrodynamic approaches has been demonstrated [25].

5.9.2 The Drift Diffusion (DD) and Energy Balance (EB) models

R. Stratton [21] first performed a moment expansion on the BTE, deriving terms to

describe the carrier and energy transport in a semiconductor.  Later, K. Bløtekjær [26]

extended the theory to two valley semiconductors.  The work of Azoff [22] extended

the hydrodynamic model  to include inhomogeneous semiconductors.   More recent

models have introduced non-parabolicity of the band structure, and higher moments

up to and including the 6th moment [27].  Anisotropy in the temperature distribution

has  been introduced  into  some device  simulators  and it  has  been shown that  the
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temperature distribution is elongated along the direction of the field [24].

Each  moment  of  the  expansion  of  the  BTE requires  the  result  of  the  previous

expansion for solution, resulting in an infinite series of moments.  The series must be

brought to a close with a so called closure relation.  In models which use the first four

moments (0-3rdmoments), it is common to close the series with the heat flux generated

by the gradient of the carrier temperature profile,

Q=−∇T e /h . (5.59)

The validity of this relation has been questioned in the literature [25-27]. A review of

closure relations and comparison to full Monti-Carlo simulation can be found in [24].

The BTE is given as

∂ f
∂ t


∂ r
∂ t

⋅∇ f 
∂ p
∂ t

⋅∇ p f =C [ f ] , (5.60)

where f is the carrier distribution function, r is the position vector, p is the momentum

vector, ∇ is the gradient operator with respect to position, ∇k is the gradient operator

with respect to momentum and  C[f] accounts for carrier scattering events (usually

approximated  by  the  relaxation  time  approximation).   This  is  a  7  dimensional

intergro-differential equation.  In this work, we follow the work of Azzoff [22].  By

multiplying the BTE by 1,  mvi and  m|v|2/2 and integrating over  k-space the carrier

continuity,  momentum  conservation  and  energy  conservation  equations  can  be

32



obtained respectively.  This method is fully described in appendix A, but the outline

of the method and key results are given below.

The 0th moment  of  the  BTE is  calculated  by multiplying  equation  5.60 by 1 and

integrating  over  k-space.   In  this  way,  the  the  current  continuity  equations  for

electrons and holes can be obtained

∇⋅J n=q⋅R∂ n
∂ t  , (5.61)

∇⋅J p=q⋅R
∂ p
∂ t  , (5.62)

where R is the carrier recombination rate and Jn,  Jp are the electron and hole fluxes,

respectively.

The  1st moment  of  the  BTE  can  be  derived  by  multiplying  equation  5.60 by

momentum (mv) and integrating over k-space.  This gives the drift diffusion equations

for electrons and holes

J n= e n [∇ E c−
3
2

k T e∇ ln me
*k∇T e]kT  e∇ n , (5.63)

J p=h p [∇ E v−
3
2

kT h∇ ln mh
*−k ∇T h ]−k T h h ∇ p . (5.64)

The 2rd moment of the BTE can be derived by multiplying equation  5.60 by energy
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(m|v|2) and integrating over  k-space.  This gives the energy  conservation equations

[28] for electrons and holes

∇⋅Sn=∇ E c

q
−⋅J n−

3 kB

2
⋅ ∂n T n

∂ t
RT nn

T n−T L

 n
 , (5.65)

∇⋅S p=∇  E v

q
−⋅J p−

3 k B

2
⋅ ∂ pT p 

∂ t
R T pp

T p−T L

 p
 , (5.66)

where,

S p=− p ∇T p
5
2

kB T p

q
J p , (5.67)

and Sn=− n ∇T n
5
2

k B T n

q
J n (5.68)

are the carrier energy fluxes and

 n= 5
2
c p kB

2

q
T e e n , (5.69)

and  p= 5
2
c p k B

2

q
T p p p (5.70)

are the carrier thermal conductivities.  Tn is defined as the electron carrier temperature,

TL as the lattice temperature,  Tp as  the hole carrier  temperature,  n as  the electron

relaxation time, p as the hole relaxation time and  as the electrostatic potential.

In the hydrodynamic model,  the energy lost by the carriers is given to the lattice.

Thus, the bulk lattice heating equation is

H=
3kB

2
⋅n T n−T L

n
 p

T p−T L

 p RE c−E v , (5.71)
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where R(Ec-Ev) is the recombination multiplied by the band gap (i.e. the dark carrier

recombination  term)  if  the  electron,  hole  and  lattice  temperatures  Te=Th=Tl are

assumed to be the same, and the lattice scattering is assumed to be instantaneous, then

the lattice heat equation may be written as

H=∇
Ec
q
−⋅Jn∇

Ev
q
−⋅J pRE c−E v . (5.72)

For computational speed and stability, the drift diffusion (DD) model will be used.

Therefore,  5.61-5.64 will  be used along with  5.72 to give the DD model with the

lattice heating model.

5.9.3 Scharfetter-Gummel discretisation of the drift diffusion equations

The carrier continuity equations (both in the bulk (5.73 and 5.74) and in the QW (5.75

and  5.76)) require the derivative of the carrier fluxes to be evaluated at each mesh

point,  

∇⋅J n−qR=0 (5.73)

∇⋅J p−qR=0 (5.74)

∇⋅J nqw−qR=0 (5.75)

∇⋅J pqw−qR=0 (5.76)

To do this, the carrier fluxes must be known mid way between the mesh points 

∂ J i

∂ x
=

J i1 / 2−J i−1 /2

 x
. (5.77)
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Unfortunately,  the  carrier  density  varies  exponentially  as  a  function  of  potential.

Thus, when calculating the current flux at the mid point i±1/2 it is not possible to

simply average the current fluxes at Ji and Ji±1 to obtain an accurate value for Ji±1/2.  It

has been shown necessary to use the Scharfetter-Gummel [29] scheme to produce

stable, well convergent solutions.  In the following section, the temperature dependent

drift diffusion equations are discretised using the Scharfetter-Gummel approach.  The

temperature dependent drift diffusion equation for electrons

J n= e n [∇ Ec−
3
2

k T e ∇ ln me
*k∇ T e ]kT  e∇ n (5.78)

can be rewritten as

J n

k T ee

=n [ ∇ Ec

k T e

−
3
2
∇ ln me

*
∇T e

T e ]∇ n , (5.79)

which is a first order differential equation of the form

C=An
∂ n
∂ x

. (5.80)

In 1D, the  constants can be defined as

C=
J n

kT  e

 and (5.81)

A=
1

k T e [ ∂E c

∂ x
−

3
2

kT

me
*

∂ me
*

∂ x
k

∂T
∂ x ] . (5.82)

Equation 5.80 may be rewritten as

∂
∂ x

n eAx =CeAx
. (5.83)

This may be solved by integration between the mesh points i and i+1
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e Ax i1 ni1−eAxi ni=
C
A
e Ax i1−eAx i . (5.84)

Rearranging gives,

C=A
eAxi1 ni1−e Ax i n i

eAx i1−eAx i

(5.85)

C=
AeAxi1 ni1

e Axi1−eAx i

−
Ae Axi ni

eAx i1−e Ax i

(5.86)

and using

hi1/2=x i1−xi (5.87)

The constant C may be written as

C=
An i1

1−e Ax i−Ax i1
−

Ani

e Ax i1−Ax i−1
. (5.88)

Using the Bernoulli function [1]

B x =
x

ex−1
(5.89)

and rewriting 

C i1 /2=
1

h11 /2
[B−Ah i1/2 n i1−BA hi1 / 2n i ]∣i1 / 2

(5.90)

Finally, defining  as

=Ahi1 /2=
hi1 /2

kT [∂ Ec

∂ x
−

3
2

kT

me
*

∂me
*

∂ x
k

∂T
∂ x ]i1 /2

, (5.91)

and substituting  5.81 results in the current flux at the mid point (i+1/2) of the mesh

expressed in terms of the carrier densities on the mesh points
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J i1 /2=
k T  e

h i1 /2
[B− ni1−B  ni ]∣i1/2

. (5.92)

Discretising  gives

=2 [1k Ec i1
−Ec i

T i1T i

−
3
2

me i1

* −me i

*

me i1

* me i

* 
T i1−T i

T i1T i ] . (5.93)

It is common in the literature to replace the m*
e terms with the 3D effective density of

states [31] using the following procedure

3
2

1

m*

∂m*

∂ x
=

3
2
∂ ln m*

∂ x
=
∂ ln m*3/2

∂ x
(5.94)

then substituting the effective mass term with the effective density of states,

N c=2  2 k T e

h2 
3/2

mn
*3 /2 , (5.95)

which gives

1
m*3/2

∂ m*3 /2

∂ x
=

1
N c

∂ N c

∂ x
. (5.96)

However, this procedure assumes that the temperature term in 5.95 is independent of

position.  Thus,  5.96 does not hold for the thermal case - this is often over looked.

The same procedure can be repeated for the drift diffusion equation for holes. 

J p=h p[∇ E v−
3
2

k T h ∇ ln mh
*−k ∇T h]−k T h h∇ p , (5.97)

When discretised using the above method, this gives the current at i+1/2 as
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J h i1/2
=

k T h h

h i1 /2
[ Bi1 / 2n i1−B−i1 /2n i ]∣i1 /2

, (5.98)

with

=2 [ 1
k

E v i 1
−E vi

T i1−T i

−
3
2

mvi1
−mvi

mv
i1
mv

i

−
T vi1

−T vi

T v
i1
T v

i
] . (5.99)

5.10 Gain

5.10.1 Calculation of transition rate

As the carrier temperature increases, the FD distribution function spreads, resulting in

fewer carriers in the lasing states and thus reduced gain.  This is one of the main

causes of  thermal roll-over in laser diodes.  It is therefore essential to have the correct

dependence of gain on temperature for accurate device modelling.  A program for the

calculation of gain and band structure was already available, but had to be modified to

generate  temperature  dependant  gain  tables.   The  laser  simulator  also  had  to  be

modified to accept the tables. The key physical equation used to describe the emission

of photons from the semiconductor is Fermi's Golden rule.  This gives the transition

rate (s-1) [30] as

W e h=
2
ℏ ∣H ' eh

2 ∣ E e−Eh−ℏ , (5.100)

where H'eh is the matrix element [30],  Ee is the electron energy, Eh is the hole energy

and  ℏ is the energy of the interacting photon. The matrix element in bra-ket (or

Dirac) notation is given by

H ' eh=〈 h∣H ' r ∣ e〉=∫
V

 H
* H '  r  e d 3 r , (5.101)

where the electron and hole wave functions are given by e and h respectively.  The
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perturbation Hamiltonian is defined as [30]

H ' r ≡ e
2 m0

Ar  e⋅p . (5.102)

After some manipulation [30], H'eh may be written as

∣H 'eh∣
2= e A0

2 m0 
2

∣MT∣
2 , (5.103)

where for transverse magnetic (TM) polarisations 

∣MT∣
2=∣M∣2 [4 /3∣〈F l | F e〉∣

2 ] , (5.104)

where  Fl  and  Fe are  the  light  hole  and  conduction  band  envelope  functions

respectively.  For the (TE) polarisations, MT is given as

∣MT∣
2=∣M∣2 [∣〈F h | F e〉∣

21/3∣〈F l | F e〉∣
2 ] , (5.105)

where  Fl is  the  heavy  hole  envelope  function.   Values  of  M can  be  determined

experimentally.  Where Fl=0 for heavy hole states and Fh=0 for light hole states.  The

transition rate per unit volume is calculated by integrating over the number of allowed

electron-hole transitions, then dividing by the unit volume in real space

W c v=
1
V∫W eh dN s=∫W w h

1
V

dN s

dk
dk (5.106)

giving the number of transitions per unit volume per second (s-1m-3).  Rewriting  using

Fermi's golden rule and the density of states as defined in Chapter 2 gives

W c v=
2 
ℏ ∫∣H ' eh∣E eh−ℏ k dk , (5.107)

where Eeh=Ee-Eh  has been defined as the energy separation of the interacting carrier

pair.  The integration is performed by a change in variables x=Eeh-ℏ
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W c v=
2 
ℏ
∫∣H ' eh∣

2x  k 
dx

dE eh /dk 
(5.108)

and noting the delta function results in

W c v=
2 
ℏ
∣H 'eh∣

2 [ k 
dE eh /dk  ]E eh=ℏ

. (5.109)

The reduced density of states is then defined as

red=[ k 
dEeh /dk  ] . (5.110)

By  rewriting  equation  5.109 using  equation  5.110 and  then  multiplying  by  the

probability of the initial state state containing an electron (fc), then by the probability

of the final state being empty (1-fv) results in

W c v=
2 
ℏ
∣H 'eh∣

2 red f c1− f v . (5.111)

5.10.2 Calculation of material gain

Gain is defined as the fractional increase in photon flux per unit length [30] and can

be written by

g≡
1


d 
dz

=
W cv−Wv c


, (5.112)

where  is the photon flux.  is given by 

=
1
ℏ  c

ng  1
2

n ng
2 A0

2  [30], (5.113)

 where c is the speed of light, n is the refractive index, ng is the group index and  is

the permittivity  of free space.  Substituting equations  5.111,  5.103 and  5.113 into

equation 5.112 gives equation 5.114, an expression for the material gain
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gsubℏ= 1
ℏ   e2ℏ

0 c m0
2
n
∣MT∣

2 redE eh−E 'g  f c− f v . (5.114)

The total material gain is given by a summation over all subbands

g ℏ=∑
n c

∑
n v

gsubℏ ,nc , nv . (5.115)

Due to the finite lifetime of the carriers in these states, the gain spectrum must be

broadened with an appropriate broadening function.  The Lorentzian function 

L E eh=
1


ℏ /
E eh−ℏ2ℏ /2 (5.116)

is often used for this purpose, where  is the broadening lifetime.  Equation 5.116 is

convolved with the gain spectra to give the broadened gain spectra using

G ℏ=∫ gℏL E eh dEeh . (5.117)

As was done for the carrier densities, the material gain was tabulated as a function of

wavelength, electron density, hole density and temperature.

5.10.3 Spontaneous emission

The downward transition probability is proportional to (<nph>+1)ℏ where <nph> is

the number of photons in a mode.  Even if no photons [30] are present in the mode,

there is still a downward transition probability.  This is the reason for spontaneous

emission.  It can be shown that the spontaneous emission rate is given by [30] 

R spℏ= 1
ℏ   e2 ℏ

n ng 0 m0
2∣M ave∣

2 red E eh−E ' gopt f c 1− f v , (5.118)

where
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∣Mave∣
2
≡

1
3∑i=0

3

∣MT∣
2 . (5.119)

This function is dependent upon temperature and quasi-Fermi levels.  It was tabulated

in a three dimensional look up table for use within the simulations.

5.11 Bulk heat generation

5.11.1 Average separation of carriers

In  device  models  used  to  simulate  silicon  devices,  it  is  common  to  assume  that

recombination  occurs between the conduction  and valance band edges,  Ec and  Ev,

respectively [31].  This approach assumes that all of the electrons in the conduction

band are at energy Ec and that all of the holes in the valence band are at energy Ev.

Consequently, this neglects the thermal energy of the carriers.  Admittedly, this is a

small energy when one compares the band gap energy and the thermal energy.  In

high quality silicon devices where recombination rates are small, the consequences of

neglecting  the  thermal  energy  are  relatively  small.   However,  in  lasers  where

recombination is the dominant process, the thermal energy of a bulk carrier pair at

300K is 0.078eV and the band gap is around 0.91eV.  Thus, the thermal energy of the

carriers accounts for around 8% of the recombination energy and must be taken into

account.

The average energy of a carrier is given by

43



E=
∫
Emin

∞

E E 3D f E dE

∫
Emin

∞

E 3D f E dE
. (5.120)

The density of 3D states assuming parabolic bands is given as

E 3D=
E
42  2m*

ℏ2 
3/2

. (5.121)

 f(E) is the occupational probability given by Fermi-Dirac statistics as

f E =
1

1eE−E f  /kT . (5.122)

If full FD stastics are used, equation 5.120 must be evaluated numerically.  However,

when Maxwell-Boltzmann statistics  are assumed for  the bulk  carrier  distributions,

f(E) can be approximated as

f E =eE f −E / kT

. (5.123)

The denominator of equation 5.120 simply gives the carrier density and can be written

as n.  The numerator can be evaluated by integrating by parts.

1
42  2m

ℏ2 
3/ 2

∫
Emin

∞

E3/2 eE f −E / kT dE (5.124)

=
1

42  2m
ℏ2 

3 /2

[−kT⋅E3 / 2 eE f −E /kT∣0
∞


3
2

kT∫
0

∞

eEF−E / kT E1/ 2 dE ]
(5.125)
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=
1

42  2m
ℏ2 

3 /2

[0 3
2

kT∫
0

∞

eEF−E /kT E1 /2 dE ] (5.126)

The integral on the right hand side of equation 5.126 is the carrier density multiplied

by 3/2 kT. Thus, the result of the integral is

1
42  2m

ℏ2 
3/ 2

∫
Emin

∞

E3/2 eE f −E / kT dE=
3
2

kT n (5.127)

and dividing by the  denominator in equation 5.120 gives

E=
3
2

kT . (5.128)

Note that this is the classical result one would expect from thermodynamics using the

principle of partition of energy.  Therefore, the average energy of a carrier  in  the

conduction band is

Ec=E c
3
2

k T e (5.129)

and the average energy of a carrier in the valance band is

E v=E v−
3
2

k T h . (5.130)

The average separation of a carrier in terms of energy can be written as

E eh= E v− E c . (5.131)

Therefore, the recombination heat source is given as

H recom bulk=Rbulk⋅ E eh , (5.132)

where R is the net rate of recombination in the bulk given by

Rbulk=RSRHRAugerRspon⋅ E eh . (5.133)

5.11.2 Free carrier absorption
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Free  carrier  absorption  (FCA) is  a   process  whereby a photon is  absorbed by an

electron or a hole, exciting the carrier from a low energy state to a higher energy state

in the same band (conduction or valance).  The carrier then relaxes by emitting heat

(phonons)  to  the  lattice  [32].   The  most  significant  contribution  to  free  carrier

absorption  usually occurs in the valance band due to the presence of the 3 valance

bands (lh, hh and so)

The free carrier absorption loss is given by,

 fc= n n p p (5.134)

where n and p are the free-carrier absorption constants [33].  The constants for the

bulk GaAs are given in table 5.10.

If the photon density as a function of position is given by PH(x,y), the energy of the

light interacting with the carriers is given by ℏ and the group velocity of the light

within the cavity is given by vg.  Then, the total heat generation per unit volume in the

bulk is given by

H fca=n nT p pTPH  x , y ℏ vg . (5.135)
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Constant Value (m2)

n 3x10-24

p 7x10-24

Table  5.10:  Bulk  FCA  constants  for  GaAs
[34].



5.12 Heating  in the quantum well

The vast majority of carriers entering the device recombine within the quantum well.

The  heating  in  this  region  must  be  accurately  treated  for  a  device  model  to  be

predictive.  The major heat generation mechanisms are free carrier absorption, SRH

recombination, Auger recombination, spontaneous emission, lateral Joule heating and

heating due to carrier capture and relaxation.  In the following section, the heating

terms describing carrier heating in the QW will be described.

5.12.1 Capture heating

Before a carrier in the QW can undergo stimulated emission, it must first be captured

from the 3D bulk states into the 2D confined states.  As the carriers relax down the

QW, they must lose their kinetic energy and momentum.  The polar optical phonon

scattering scattering mechanism is the dominant scattering mechanism in GaAs based

semiconductors.  Thus, the energy and momentum of the carriers are lost  via LO-

phonon emission.  The distance from the average 3D conduction band energy to the

bottom of the band edge is given by

 E c= Ec−E c
qw , (5.136)

where Ec
qw is the bottom of lowest band in the QW.  For the valance band, the distance

from the 3D-states to the bottom of the lowest band is given by

 E v= E v−E v
qw

, (5.137)

where  Ev
qw is the bottom of lowest band in the valence band QW.  Thus, the heat

generated due to capture heat is given by
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H cap= E c R cap
e  E v Rcap

h , (5.138)

where Re
cap and Rh

cap are the net electron and hole QW capture rates.  We now define

for later  use the QW band gap as  the distance between the bottom of  the lowest

conduction subband and top of the highest valence subband

Eg
qw=E c

qw−E v
qw

. (5.139)

5.12.2 Stimulated emission

No  heat  is  emitted  during  stimulated  emission.   However,  equation  5.138

overestimates the energy released during carrier relaxation. The carriers do not lase

from the bottom of the lowest band in the QW.  In fact, they lase from slightly above

this  energy.   Thus,  equation  5.138 simulates  the  carriers  involved  in  stimulated

emission relaxing too far.  To readjust this energy balance, a small energy equal to the

distance between the bottom of the lowest band and the energy at which the carriers

recombine  through  stimulated  emission  must  be  subtracted  from  the  total  heat

generation.  This must be done for both the conduction and valence bands in the QW.

Equation 5.138 assumes the carriers have fallen Ec and Ev respectively.  Therefore,

if stimulated emission were happening at the bottom of the band, the carriers would

only have to fall through  Eg
qw i.e. Eg− E c− E v .  However, we already know

that the energy an electron must fall through to recombine with a hole is ℏi where i is

the mode number.  Thus the carriers which recombine via stimulated emission have

been calculated as generating  ℏ i- Eg
qw   more  heat energy than they should have.

Therefore, the heat
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H spon=∑
i=0

N

Rstim
i Eg

qw−ℏi (5.140)

needs to be subtracted from the net heat generation term, where N is the number of

modes.

5.12.3 Spontaneous emission

Light emitted due to spontaneous emission is radiated in all directions.  The spectrum

of the light emitted is also very broad compared to the lasing mode, thus very little

light escapes the cavity.  Most of the light is absorbed and eventually given to the

lattice as heat.  For this reason, spontaneous emission is modelled as a heat source

H spon=E g
qw Rspon . (5.141)

5.12.4 Lateral Joule heating

The QW in a laser diode is usually undoped and thus has a very high mobility.  It

therefore  produces a very small amount of Joule heating.  Joule heating due to the

lateral movement of carriers within the QW is generally the most insignificant heat

source within a device.  However, it should be taken into account.  The following

equation takes accounts for Joule heating due to lateral current flow in the QW

H Joule=J e
qw ∂
∂ x

E cJ h
qw ∂
∂ x

E v . (5.142)

5.12.5 Shockley-Read-Hall (SRH) heating

Shockley-Read-Hall is a dark recombination process, as explained in detail in Chapter
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2.  The heat generated in the process is given by

H SRH
qw =RSRH⋅E g

qw . (5.143)

Although  equation  5.138 overestimates  the  heat  generated  in  the  capture  of  the

carriers  involved  in  SRH  recombination,  this  does  not  matter  because  the  heat

generated in SRH recombination will be underestimated by the same amount.

5.12.6 Free carrier absorption

The heat generated by free carrier absorption is given by

H fca
qw =n

QW nT p
QW pT PH x , yℏv g , (5.144)

where n
QW and p

QW are the free carrier absorption constants associated with the QW.

5.13 Total lattice heat

The total quantum well lattice heating term is given by

H qw=H joule
qw H FCA

qw H Aug
qw H SHR

qw . (5.145)

Therefore, the total heating term is given as

H qw=H qwH recom bulkH fcaH joule
bulk

. (5.146)

5.14 Contact heating

If a metal is deposited on a semiconductor with a low doping level, a Schottky contact

is formed resulting in rectifying behaviour.  This behaviour and the associated voltage

drop is undesirable for most modern applications requiring high electrical efficiency

and high modulation  rates.   If  the  semiconductor  surface is  doped,  the  difference
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between  the  Fermi  levels  of  the  metal  and  the  semiconductor  decreases  (in  the

absence of surface Fermi-level pinning).  This decreases the barrier height and the

thickness  of  the  depletion  region,  resulting  in  a  more  linear  IV curve.   If  a  high

enough dopant concentration is introduced into the contact region, ohmic behaviour is

observed.   There  are  three  main  mechanisms  that  control  current  flow  across  a

metal/semiconductor interface [35]:

1. Thermionic  emission:  This  mechanism  is  dominant  in  moderately  doped

semiconductors (Nd<1x1017cm-3), where the depletion region is wide making

tunnelling  a  low probability  event.   If  the  barrier  height  is  small,  a  large

number of electrons have enough kinetic  energy to surmount it  and Ohmic

behaviour is observed.  However, if the barrier height is large and most the

electrons can not surmount it, non-Ohmic behaviour is observed [35].

2. Thermionic-field emission: This mechanism dominates in moderately doped

semiconductors (1x1017<Nd<1x1018cm-3).  Thermionic emission and tunnelling

both take place around the junction [35].

3. Field emission (FE): Tunnelling is the dominant carrier transfer mechanism

when the semiconductor is heavily doped and the depletion region is narrow

[35].

Ohmic contact resistance is a large subject.  A good overview can be found in [36]

and a more theoretical  treatment  can be found in [37] and [38].   Specific contact

resistance is defined as 
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={ ∂ J
∂V }

V =0

−1

. (5.147)

This  is  an  experimentally  determined  parameter,  usually  determined  using  the

transmission line method (TLM).  In the TLM, a series of metal contacts (pads) are

laid down separated by varying distances.  The measured resistance between the pads

are plotted on a graph as a function on the distance between neighbouring pads.  The

total resistance between the pads is the sum of two contact resistances and the bulk

resistance.  The line  is  extrapolated to  the intersect  and this  value gives  twice the

contact  resistance.   The  TLM  method  is,  however,  a  thin  film  technique  which

assumes uniform current flow in the film (i.e. the impact of current spreading effects

is neglected).

Tables  5.11 and 5.12 give various values of contact resistance for different material

systems  [36]  from the  literature.   A good  value  for  contact  resistance  is  usually

considered as anything around or below 1x10-cm and a poor value for contact

resistance is  usually  considered as anything above or around 1x10-5cm.   Values

reported in the literature for metal n-GaAs and p-GaAs interfaces are often around

1x10-6cm.   The  contact  resistance  of  the  interface  is  very  dependent  upon  the

deposition  technique  (e.g.  sputtering,  evaporation  or  chemical  vapour  deposition

(CVD)).  Annealing has been shown to improve contact resistance, depending upon

the annealing time and temperature.  Because of the strong dependence of contact

resistance  on  the  processing  technology  used,  the  only  way  to  know the  contact

resistance of a sample is to test a sample with the TLM.  Lacking real measurement
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data for the 1.3m lasers, a review of the literature was conducted to find reasonable

values to use (tables  5.11 and  5.12).  For both n and p contacts, typical values are

around 1x10-6 cm2. Therefore, this was the value chosen as a simulation parameter.
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System Anneal Nd-Na (cm-3)  (cm2) Reference

Ge/Pd Y 1x1018 1-3x10-6 [39,40]

Si/Pd Y 1x1018 2-6x10-6 [41]

Pd/In/Pd Y 1x1018 1x10-6 [42]

Al/Ni/Ge Y 1x1018 1.4x10-6 [43]

Cu/Ge Y 1-3x1018 6.5x10-7 [44]

Au/Pt/Ti N 1.5x1018 1.1x10-6 [45]

Au/TaSiN/Au/Ge/Pt Y 1x1018 3.7x10-6 [46]

Ag,Au/Ti N n/a 2-5x10-7 [47]

Au/Ge/Pd Y 1x1018 1x10-6 [48,49]

Table 5.11: Values for n-GaAs contacts. The values in this table were taken from

[35].



The  heat  generated  generated  from  the  contact  resistance  was  included  in  the

simulator at the metal/semiconductor interface as a heat source.  The voltage drop

across the contact is added to the total applied voltage.

5.15 Stability of the electrical model

At low currents (i.e. below threshold), spikes were observed in the current density

profile.  Upon approaching threshold, the simulator performed well.  Below threshold,

numbers  with  a  wide  range of  magnitudes  (1x10-25 –  1x1010  )  were  found in  the

Jacobian (figure  5.8).  The mantissa (floating point precision) of a double precision

number in a PC is only 53 bits (15 digits). Thus, the problem exceeded the computers

floating point precision.  This section describes the work done to correct this problem,

including the implementation of back tracking, clamping and matrix normalisation.

Although these techniques provided increased stability, it was found that the solution

time was slower.  Therefore, these techniques should only be used when convergence
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System Anneal Na-Nd  (cm-3)  cm2) Reference

Au/Zn/Au Y 3x1017 3.3x10-6 [50]

Pt/Ti N 5x1020 8x10-7 [51]

W or WSi N 5x1019 1x10-6 [52]

Au/Zn/Au N  1x10-6 [53]

Si/Ni/Mg/Ni Y 8x1018 7x10-7 [54]

Pd/Sb/Mn/Pd Y 2.5x1018 2x10-6 [55]
Table 5.12: Values for p-GaAs contacts.  The values in this table were taken from
[35]



is hard to achieve.

5.15.1 Matrix normalisation

In an effort  to  reduce the  matrix  bandwidth,  matrix  normalisation was performed.

Each row was divided by the diagonal element, resulting in a diagonal of 1.  This was

found to reduce the matrix bandwidth by up to two orders of magnitude.

5.15.2 Iterative improvement of the solution

Direct methods of solving linear equations often result in large round-off errors.  In
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Figure 5.8: A plot of the range of exponents in the Jacobian when

the  simulator  is  run  on  a  laser  structure  developed  by  the

Fraunhofer Institute for Applied Solid State Physics [56].  It can be

seen from this graph that the numbers within the Jacobian only fall

within the precision of the computer for voltages above 1.1 volts

(threshold).



order to improve the accuracy of the LU sparse decomposition algorithm, an iterative

improvement of the solution was performed [57].  Firstly, the set of linear equations

  Ax=b (5.148)

is rearranged to give

Ax−b=0 . (5.149)

Ax is then added to each side

A  x x− b=A x (5.150)

where  x+x is  the  real  solution  vector  to  the  set  of  linear  equations  with  no

computational  error  plus  some  error  x.   The  solution  given  by  sparse  LU

decomposition is x+x.  After the initial solution step, all of the parameters on the left

hand side of equation  5.150 are known.  Equation  5.150 can then be solved for  x.

This can be subtracted from the first approximate solution to obtain a a better solution

with less rounding error.  The process can be repeated until a desired level of accuracy

is obtained.    The procedure can gain a significant speed up if one notes that LU

decomposition has already been preformed on the Jacobian A.  Thus the program can

skip straight to the solution routine to obtain  x.  Under some circumstances, this

method is essential to achieve convergence.  However it requires more computational

steps.  Thus, it  was left  as a option only to be used when convergence is hard to

obtain.

5.15.3 Clamping and back tracking algorithms for fast global convergence

The general idea of back-tracking is to note that Newton's method always produces a
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step in the right direction (i.e. towards the solution).  However, the step is sometimes

too big and the solution is missed.  This can lead to slow convergence or even no

convergence at all.  A back-tracking algorithm, evaluates the Newton step.  If it is

acceptable, no change is made to the step vector.  However, if the step is too big and

increases the error, the step vector is multiplied by a constant in order to make the

global error decrease.  The thermal solver was generally found to be stable and not

require clamping or back-tracking.  However, the Newton solver of the main laser

diode simulation software was shown to sometimes benefit from clamping and back-

tracking to force global convergence.

A back-tracking algorithm from [58] was used and will  now be described.    The

Newton scheme is defined as

 x=−J−1⋅F (5.151)

where F(x) is the error vector, x is the update and J is the Jacobian, which is defined

as

J=∂F
∂ x

. (5.152)

An error function can be written as

f  x=
1
2

F⋅F . (5.153)

Differentiating f(x) results in

f ' x =
1
2
∂F
∂ x

⋅F
1
2
∂F
∂ x

⋅F (5.154)

and adding the result gives
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∂ f
∂ x

=J⋅F . (5.155)

Equation  5.156 proves  that  the  Newton  step  is  always  in  the  correct  direction  to

minimise the error

∂ f
∂ x

 x= J⋅F⋅−J−1⋅F =−F⋅F0 . (5.156)

For a Newton step to be accepted, the error f must decrease.   However, the step may

be too big and need scaling in order to produce an optimum step.  If the full Newton

step is  defined as p and  is defined as a scaling factor, then new state variables can

be defined as 

xnew= xold p : 01 . (5.157)

To decide whether or not to accept a step, the error f must decrease and the decrease

must not be too slow.  To avoid this, the criteria

f  xnew≤ f xold ∇ f⋅ xnew− xold  . (5.158)

is  set.   This  forces  the error  function  f(xnew)  to  be at  least  equal  to  the old  error

function f(xold) minus some fraction of the initial decrease of the error -  is usually

set to 1x10-4 [58].  The error at the new point in the multi dimensional vector space is

defined as

g = f  xold p , (5.159)

and its differential with respect to  is defined as

g ' =∇ f⋅p . (5.160)

The first step is to check if =1 is an acceptable option using equation 5.158.  If this is

not  acceptable,  then  g(1)  is  now known as  well.  The error  function  can  g( be
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modelled as a quadratic equation

g ≈[g 1−g0−g ' 0 ]2g ' 0g0 . (5.161)

The minimum in the error can be found by taking the derivative with respect to  and

solving for lambda. This gives

=
g ' 0 

2 [g 1−g0−g ' 0 ]
. (5.162)

The scaling factor,  is not allowed to be smaller than 0.1, so that convergence does

not grind to a halt.  If the value for  is not accepted (using equation 5.158), then for

the next iteration  is modelled as a third-order polynomial

g =a3b2g ' 0 g 0 . (5.163)

Using the same approach, the minimum of this cubic polynomial is found from

=
−bb2−3ag ' 0

3a
. (5.164)

To  protect  the  Newton  solver  from  very  large  steps,  the  correction  to  the  state

variables is first coarsely clamped before the back-tracking algorithm is called.  The

following clamping scheme is used

xclamp=
1

1.0∣ x
clamp∣ . (5.165)

This allows the back-tracking algorithm to adjust the step size within the limit set by

the  clamp.   The  use  of  back-tracking  reduces  the  total  number  of  iterative  steps

needed  to  solve  the  semiconductor  equations  and  also  decreases  the  total  error.

However the disadvantage is that every time g(x) is evaluated, the error function for

every equation in the matrix must be re-evaluated.  This is a slow process, so the back
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tracking algorithm is only triggered if the error at the end of a solution without back

tracking is judged to be unacceptable. 

5.15.4 Bi-CGSTAB

An iterative sparse matrix solver was tested as a possible replacement for the sparse

LU decomposition  [60]  combined  with  the  direct  sparse  solver  used  to  solve  the

electrical  problem.   The  stabilised  bi-conjugate  method  (Bi-CGSTAB)  with  LU

preconditioning [59] has a good reputation for being a stable and fast matrix solver.

However, it proved to require very accurate LU decomposition in the preconditioning

step to guarantee convergence of the Newton solver.  Bi-CGSTAB was thus found to

be impractical.

5.16 Summary

In this chapter, an isothermal device simulator has been extended to include thermal

effects.  The lattice  heat  equation  has  been discretised  and solved  with  a  coupled

iterative  solution  of  the  electrical  and  thermal  problems.   A  database  capable  of

storing and using the temperature dependent material  parameters has been written.

Band gap energy,  thermal  conductivity,  electron  affinity,  recombination  constants,

gain, spontaneous emission and mobility all vary as a function of temperature within

the model.  The need for a unified electrical and thermal mesh has been demonstrated.

A model which takes into account the energy lost during the capture process has been

derived.
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The thermodynamic treatments and hydrodynamic models were reviewed and their

relation to the drift diffusion model has been shown.  The current equations have been

discretised and implemented into the device simulator using a Scharfetter-Gummel

discretisation  scheme.   Finally,  the  stability  of  the  electrical  model  has  been

examined.  Matrix  normalisation,  iterative  improvement  of  the  solution,  clamping,

back-tracking algorithms and the Bi-CGSTAB matrix solver have been evaluated as

optimisation techniques.

The result is a simulation tool capable of full electro-thermal-optical simulation.  In

the next chapter, the model will the be compared with experimental measurements

reported in  Chapter  4.   Finally,  the resulting model  will  be used to  optimise  the

thermal environment of the 1.3m edge-emitting lasers investigated in Chapters 3-4,

with  the  aim of  designing  devices  with  less  self-heating  and therefore capable  of

longer lifetimes.
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