
Fundamental principles Chapter 2

In this chapter, the fundamental operating principles of the laser diode are reviewed.

The need for a resonant cavity, gain medium and optical confinement are explained.

The main  radiative  recombination  and absorption  mechanisms  are  then  presented.

Optical confinement using a double-heterostructure is examined in conjunction with

the concept of population inversion.  The main dark (non-radiative) recombination

mechanisms (Auger, Shockley-Read-Hall) are explained.  Typical behaviour of the L-

I curve, beam quality and corrective optics are examined.  A brief review of laser

structures  is  given,  including that  of tapered lasers and VCSELs.   Finally,  device

degradation, lifetime and heat management  are reviewed.

2.1 The laser diode

A laser diode in its simplest form consists of a gain medium and an optical cavity.

Such a device is  depicted in figure  2.1.   In the most  simple laser diodes,  gain is

generated by forward biasing a p-n junction until an abundance of both electrons and

holes are present in the depletion region.  In direct band gap semiconductors, these

carriers  radiatively  recombine  via  stimulated  emission  to  produce  photons.   By

cleaving the diode, a resonant cavity is formed, the generated photons reflect of the

mirrors at either end of the cavity stimulating the emission of more photons.  Thus, a

high intensity optical field is built up.
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2.1.1 Radiative transitions

The key physical process responsible for lasing action is stimulated recombination.

Figure  2.2a depicts  this  process  in  a  direct  band gap semiconductor.  It  shows  a

photon of energy E21 propagating from the left of the picture and interacting with an

electron-hole pair.  The electron in the conduction band has energy E2, and the hole in

the valance band has energy  E1,.  A second photon of energy  E2−E1=E 21=ℏ

will be emitted.

This photon will be of the same frequency, phase and direction as the photon which

stimulated the emission.  These two photons will stimulate more electrons to fall to
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Figure 2.2: The processes of stimulated emission (a), spontaneous emission (b) 
and absorption (c). 

Figure 2.1 : The laser cavity and active gain medium.



the valance band.  In this way a large radiation field of monochromatic coherent light

can be built up.  The downward transition rate is [1] given by

r21=B21 f 2 [1−f 1] PE21 , (2.1)

where B21 is the transition probability, f2 is the probability that energy E2 is occupied,

f1 is the probability that E1 is occupied and P(E21) is the photon density at energy E21.

Electrons can also spontaneously recombine with holes, thereby emitting a photon.

This is depicted in figure 2.2b. The spontaneous emission rate is given by

r21spon= A21 f 2 [1−f 1] , (2.2)

where A21 is the downward transition probability [1].  Photons can also be reabsorbed

exciting  an electron  from the valance  band to the  conduction  band.   The upward

transition rate r12 is written as

r12=B12 f 1 [1−f 2]PE 21 (2.3)

where B12 is the transition probability, f1 is the probability that state E1 contains an

electron and f2 is the probability that state E2 contains an electron. [1]   A21, B12 and

B21 are known as the Einstein coefficients and are related to each other by the Einstein

relations

A21=8n3 E21
2 /h3 c3B21

(2.4)

B12=B21
(2.5)

2.1.2 Population inversion

Above a critical value of injection current, population inversion occurs and stimulated

emission dominates absorption.  Transparency is defined as the condition when the
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probability  of stimulated emission is  equal to the probability  of absorption.   Gain

occurs when the probability of stimulated emission is greater than the probability of

absorption.  Population inversion can be defined as

B21 f 2 [1−f 1]B12 f 1 [1−f 2] . (2.6)

Expression  2.6 can  be  understood  as  the  probability  of  an  electron  being  in  the

conduction band and a hole being in the valance band having to be greater than the

probability of an electron being in the valance band and a hole in the conduction band.

If f1, f2 are replaced with the Fermi-Dirac functions for E1 and E2 respectively,

f 1=
1

1exp 
E1−Fp

kT


(2.7)

f 2=
1

1exp
E2−Fp

kT


. (2.8)

then the  expression  Fn-Fp>E2-E2 is  obtained.   This  can  be  rewritten  as  Fn-Fp>Eg.

Thus, population inversion occurs when separation of the the quasi-Fermi levels is

greater than the band gap energy as shown in figure 2.3.
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2.1.3 The resonant cavity

The cavity in a laser only supports an integral number of half wavelengths between

each mirror, as illustrated in figure 2.4.  This is due to the round-trip phase matching

condition.  The energy difference between the modes (E) can be shown to be

 E= c h
2 L ng

, (2.9)

where c is the speed of light in a vacuum, ng is the group index of cavity, h is Plank's
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Figure 2.3a: Energy bands at equilibrium in a heterostructure laser.

Figure 2.3b:  Energy bands at population inversion.



constant, and L is the cavity length.  The active region only produces gain over a finite

range of energies.  Thus only those cavity modes whose wavelength corresponds to

this  energy range can  lase.   Figure  2.5 plots  the  gain  profile  of  a  laser  with  the

resonant modes of the cavity.  The two vertical lines represent the wavelength range

where gain exceeds loss.  The short spikes plotted at the bottom of the graph represent

modes of the cavity.

Although  typically  tens  of  modes  experience  gain,  far  above  threshold  it  is  not

possible for all the modes to lase at once, as they compete with each other.  The mode

with  the  greatest  net  gain  (gain  minus  loss)  can  stimulate  more  photons  of  its

frequency than a mode with slightly fewer photons.  Thus, the net result is that the

mode with the greatest net gain will grow the fastest,  taking electron-hole pairs in the

gain medium away from the other modes.  The result is that one mode dominates and

its spectral width is far sharper than one would expect theoretically from the resonant

cavity  in  the  absence  of  gain.   (The  above  discussion  neglects  filamentation  and

spectral hole burning effects.)

6

Figure 2.4: Supported cavity modes [2]



  

One mirror of the resonant cavity is usually coated with an anti-reflective coating to

enable light to be radiated from only one end of the device.  For a laser to lase at a

given energy, the material gain  g(E), multiplied by the confinement factor    must

equal all the losses (i.e. internal cavity losses  and the mirror losses) 

 gE=i
1

2L
ln  1

R1 R2

 , (2.10)

where L is the cavity length and R1,  R2  are the power reflectivities of the two mirror

facets.

2.2 Separate confinement layers

Early homojunction lasers consisted simply of a p-n junction with no waveguiding or

carrier confining structure.  This led the optical mode to extend into the bulk and thus

optical  losses were very high.   Consequently,  operation was only possible at  very

large current densities and cryogenic temperatures. 
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Figure 2.5 Viable lasing modes of the laser, the gain and 
loss curves have been shown along with the frequencies at 
which the cavity will resonate, denoted by the vertical lines 
on the horizontal axis [3].



A  major  step  forward  was  the  development  of  the  double-heterostructure  laser,

depicted in figure  2.6a.  In this device, carriers were confined to a thin (70-200nm)

layer  of material,  whose band gap energy was narrower than that  of the cladding

layer.  The confinement region confined the optical mode as well due to its lower

refractive index.  The next generation of devices used two separate regions (figure

2.6b) - one to confine the carriers and one to contain the optical mode.  This enables

quasi-independent  optimisation  of  each  structure  for  optimum  carrier  and  light

confinement.  Such a device is called a separate confinement heterostructure (SCH)

laser.  If the AlGaAs composition is graded in the wave guiding region better carrier

collection efficiency and wave guiding can be achieved (figure 2.6c).  This is called

the graded index separate confinement heterostructure (GRINSCH) laser [2].

The optical confinement of a mode is defined as
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Figure 2.6: Separate confinement of carriers and waveguideing 
[2].

a

b
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=
∫

−d /2

d /2

I x dx

∫
−∞

∞

I x dx
[3,4], (2.11)

where I is the modal intensity  and d is the width of the active region.  Thus, the

confinement factor determines the fraction of the optical power of the mode which is

confined in the gain material.   A plot of the refractive index profile of a double-

heterostructure laser is depicted in figure 2.7.  

2.3 Fundamentals of quantum wells

As described in section 2.2, the QW is one of the most important aspects of a modern

laser diode.  In this section, the fundamental concepts of the QW will be discussed -

quantisation of momentum normal to the plane of the QW and the concept of k-space

is reviewed.
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Figure 2.7: Optical confinement [3,4].



2.3.1 Quantum wells and Schrödinger's equation

The width of a quantum well is comparable to the wavelength of an electron.  Thus,

an analogy can be drawn between an optical waveguide (for photons) and a QW (for

electrons).  Just as a mode in a waveguide can be described by the wave equation, the

wave function  of  an  electron  can  be  described by the  time invariant  Schrödinger

equation [5]

−ℏ2

2m
*  ∂2

∂ x
2

∂2

∂ y
2

∂2

∂ z
2 V x , y , z =E  . (2.12)

For a 1D structure the equation can be written as

−ℏ2

2m
*  ∂2

∂ z
2 V  z=E  . (2.13)

An  ideal  and  infinite  quantum  well  can  be  described  as  a  region  of  0  potential

surrounded by a region of infinite potential.  Such a situation is depicted in figure 2.8.

Equation 2.13 can be recognised as a wave equation, as such a known solution is of

the form

 z =A sin k z z Bcosk z z  . (2.14)
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Figure  2.8: Infinite quantum well [5].



Substituting this wavefunction into Schrödinger's equation gives [5]

ℏ2 k2

2m*  A sinkz z Bcosk z z =E  A sink z z Bcos k z z  , (2.15)

resulting in

ℏ2 k z
2

2m*
=E . (2.16)

The potential well is infinite so the electron cannot escape from it.  If the left hand

side of the well  is  taken as the origin,  then B must equal 0.   For the probability

function to go to zero at the right hand side of the well, the following relation must

hold

k z=
 n
lw

, (2.17)

where, n is an integer.  Thus, the wave vector kz is a discrete function normal to the

plane of the QW.  The energy of the subband is then given by

E n=
ℏ22 n2

2m lw
2 . (2.18)

The only constant left  to find in equation  2.14 is A.  If the wave is a probability

function and it is known that the electron is somewhere within the energy level, 

can be normalised to 1,

∫
0

lw

* z  z dz=1 [6] (2.19)

resulting in

A= 2
lw

. (2.20)
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Thus, the wave function can be evaluated as

 z z = 2
lw

sin n z
lw

 . (2.21)

Figure 2.9 depicts the first three solutions of equation 2.21 for an infinite QW.

Although the electron wave function has discretised k-vectors, the electrons are free

to move in the 2D plane parallel to the well, whereby the square of the wave vector

parallel to the plane is

kxy
2 =k x

2k y
2

, (2.22)

and using  the  operator  p=ℏ k for  momentum.   The total  energy of  a  confined

electron can be written as the sum of the energy contributed from the confined z-

momentum and that from the 2D momentum i.e.

E ek=E n
ℏ2 k e

2

2mc
* . (2.23)

The quantum well of a laser diode is engineered to produce a quantum well in both

the conduction and valence bands, see figure 2.10.
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Figure 2.9: Wave function [7].



For  an  electron  and  hole  to  radiatively  recombine  via  stimulated  emission,  both

carriers must have exactly the same momentum (kh=ke), because no momentum can

be given to the photon.  Thus, for a direct band gap transition between two carriers

with the same momentum a photon of energy 

E ehk=E 'g
ℏ2 k h

2

2m v
*


ℏ2 ke
2

2mc
*
=E' g

ℏ k2

2mr
* (2.24)

would be released.  Here E'g is defined as the sum of the band gap of the QW (Eg
qw)

plus the offset of the both (electron and hole) subband energies.  The reduced mass mr

is given as

mr
*=

mc
* mv

*

mc
*mv

* . (2.25)

In the above derivation, it has been assumed that the QW is infinite.  If the well is not

infinite, the wave functions will extend into the barrier.  It has also been assumed that

the bands are parabolic and symmetrical in all directions.
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Figure 2.10: Conduction and valance band.



2.3.2 3D and 2D k-space

Although it  was implied  in the previous section that  the wavefunction  only has a

quantised wave vector in the plane normal to the QW, quantised wavefunctions exist

in  all  directions  of  the  crystal.   This  can  be  demonstrated  if  a  wavefunction

 x = A sin k x x  within a 3D crystal is considered.  The wavefunction must tend

to zero at the bounds of the crystal (x=0,Lx).  Thus [7]

sink x⋅0=sinkx⋅Lx=0 . (2.26)

As in the previous section, it is clear from equation  2.26 that all the electron wave-

function must have a discrete set of kx vectors i.e.

k x=
 n
Li

, (2.27)

where n is the quantum number of the system.  A set of electron states is giveby [7]

k=nx K xny K ynz K z , (2.28)

where 

∣K i∣=/Li
. (2.29)

The set of 3D states is depicted in figure 2.11.  If one of the dimensions of the crystal

system is reduced (as in a QW), then equation 2.27 shows that the 3D density states

spreads out, forming. planes of 2D states.  This is depicted in figure 2.12.
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It can be shown [7] that the total number of states in an m dimensional system is 

N s=
V k

2 /Lm
m , (2.30)

where m=1, 2, 3 and Lm is the length of each dimension of the crystal in real space.

The density of states is defined as

∫
V k

mDk d3 k=
N s

V
(2.31)

where mD is an m dimensional density of states function and V is the crystal volume.

Solving equation 2.31 and using equation 2.30 gives 

mDk ≡
1
V

d N s

dk
=

L m

V
1

2m

dV k

dk
. (2.32)

This expression is also valid for non-parabolic bands.

By  multiplying  by  the  density  of  states  by  the  occupational  probability  f(k)  and
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Figure 2.11: 3D density of states 
[7]

Figure 2.12: 2D density of states [7].



integrating, the number of carriers in each subband can be calculated as

ci=2∫
0

∞

k  f k d3 k . (2.33)

The factor of two is included to take account of spin degeneracy.  Assuming one

quasi-Fermi level for all the sub bands, (i.e. all subbands are in equilibrium with each

other), the total carrier density for all the bands in the QW can be calculated as

c=2∑
i=1

N

∫
0

∞

k  f k d3 k , (2.34)

where N is the number of bands.  A figure depicting the 2D-density of states and the

structure of the subbands is shown in figure 2.13.

2.4 Lasing threshold

As the p-n junction is forward biased and the current increases,  more carriers  are

16

Figure 2.13: On the left, the parabolic band
structure for an infinite quantum well is 
plotted, on the right the 2D-density of states
is plotted.



captured into the confined states of the QW.  When the carrier density in the QW is

high enough for population inversion to be achieved and the gain is high enough to

overcome the material losses the medium is said to have become transparent.  As the

carrier density is further increased, the gain becomes high enough to overcome all

cavity losses (including the mirror losses) - this point is called threshold (I th).  An L-I

curve is plotted in figure  2.14.  The emission spectra that would be observed at the

front  facet  of  the  laser  is  shown  in  figure  2.15.   Far  below  threshold  (a),  only

spontaneous emission  is  observed.   As the threshold condition  is  approached,  the

spontaneous emission spectrum is amplified  by the stimulated emission processes,

forming  the  true  amplified  spontaneous  emission  spectrum  (ASE).   The  cavity

superimposes (modulates) its resonances on top of the true ASE spectrum forming a

comb-like spectrum.  From this modulated ASE spectrum, it is possible to calculate

the optical gain [8].  Ideally far above threshold a signal mode dominates the lasing

spectra.  However, in practice effects such as spectral hole burning mean that often

more than one mode can lase.
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Figure 2.14: Typical LI-curve.
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2.5 Dark recombination processes

Radiative  recombination  processes  are  not  the  only  processes  in  semiconductors.

There are also dark recombination processes, which produce no light. The main dark

recombination processes in semiconductors  at  room temperature are the Shockley-

Read-Hall  (SRH)  and  Auger  recombination  processes.   SRH  describes  the

recombination of electrons (in the conduction band) and holes (in the valance band)

through defect states within the band gap.  The energy Ee-Eh is released to the lattice.

The recombination rate is

RSRH=
np−n i

2
 p0 nn i n0  pni 

, (2.35)

where the lifetimes p0 and n0 are the recombination lifetimes for electrons and holes.

[9]

Auger recombination is a three body process involving either two electrons and a hole

or two holes and an electron, in which one electron and one hole recombine.  The
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Figure 2.15: Emission spectra (a) far below threshold (b) just below 
threshold (c) far above threshold [2].
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excess energy (Ee-Eh) is given to the extra electron or hole.  The recombination rate is

phenomenologically described by [9]

RAuger=C n nC p p np−n i
2 , (2.36)

where Cn and Cp are  the Auger recombination  parameters  for electrons  and holes

respectively.

2.6 Laser structures

2.6.1 Ridge waveguide structures

The  first  lasers  produced  were  broad  area  structures,  which  provided  no  lateral

confinement for the optical mode. Broad area devices can produce very high powers

[10], but are susceptible to filamentation and have poor beam quality.  This makes

coupling to fibres difficult.  Such a device is depicted in figure 2.16.  

An optical ridge waveguide can be defined by etching two trenches.  This enables

lateral mode confinement and improves the beam quality, thereby making it easier to

couple the light into a single-mode optical fibre.
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Figure 2.16: Broad area structure.



High power 980nm RW structures optimised for the pumping of EDFAs have been

shown capable of delivering up to 1.8W of optical power [11].  However, due to the

tightly confined mode and high optical power, it is possible to damage the front facet

(i.e. catastrophic optic damage).  Short haul low power 1.1m RW lasers have shown

capable of modulation rates up to 40GHz [12]. 

2.6.2 Tapered laser structures

Although ridge waveguide lasers have been shown capable of producing 1.8W [11] of

optical power, tapered lasers have been shown capable of producing nearly-diffraction

limited beams in excess of 6.7W [13-14].  A tapered laser consists of two functional

blocks - the ridge waveguide (RW), and the tapered section (figure 2.18).  The ridge

waveguide serves two purposes.  Firstly, it provides a single lateralspatial mode to the

tapered section of the laser, and secondly, it filters out the higher order lateral modes

returning from the waveguide.  The tapered region amplifies the small input  power

from the RW section to produce a large output power.  The tapered region allows the
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Figure 2.17: Ridge waveguide structure.



light to diffract out as it propagates towards the front facet, thus reducing its power

density and reducing the risk of saturation, spatial hole burning, self focussing, and

catastrophic optical damage [15].

2.6.3 Vertical Cavity Surface-Emitting Lasers (VCSELs)

Edge emitting lasers (EELs) were the first class of diode laser to be developed.  The

light  produced  by  a  typical  EEL  is  highly  divergent  and  astigmatic.   The  beam

diverges very quickly along the vertical axes.  However, along in the horizontal axis,

the beam diverges slowly.  This is due to diffraction. (see figure 2.18)   It usual to use

complex corrective optics to focus the light into a non-divergent beam.

The vertical cavity surface emitting laser or  VCSEL is another class of laser which

emits light normal to the epitaxial layers.   Due to the circular  beam, the coupling

optics  are  much  simpler,  making  coupling  into  a  fibre  less  costly.   Cost  is  also

reduced in this class of device for two reasons.  Foremost, a very high number of

devices can be grown per wafer and secondly no packaging is required to test the
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Figure 2.18: A pictorial example of light progressing down the RW structure
and being amplified in the tapered section.  The fast and slow optical axes 
have been marked.



operation  of  the  device  [16].   Thus,  resources  are  not  spent  packaging  broken

structures. The structure can be integrated into 2D arrays.  VCSELs also have very

low threshold and operating currents, but have a limited output power.

2.6.4 Other laser structures

Many other variations of the basic laser diode have been proposed. By reflecting light

from the laser back into the cavity, the beam quality can be significantly altered [17],

[18],[19].  The effects can be both positive and negative, causing either constructive

or destructive interference [17], frequency stabilization [19], or even hysteresis [17].

Distributed feedback lasers (DFB) are another class of specialised laser, designed to

have a very stable wavelength.    A stable lasing wavelength is achieved by etching a

Bragg  grating  along  the  structure  close  to  the  active  region.    DFB  lasers  are

commonly used [20] for DWDM applications where frequency stability is essential.

A very different and more complex type of laser diode is the quantum cascade laser

(QCL).  Unlike other laser diodes, which rely on a conduction-valance band transition

to  generate  photons,  QCLs are  unipolar.   Photons  are  generated  via  intersubband

transitions between the conduction subbands of a superlattice [21].  This allows far

infra-red emission to be achieved.

2.7 Lifetime, degradation and heat

High heat dissipation rates are inescapable with the ever increasing need for higher

power  and  higher  speed  devices.   With  higher  heat  dissipation,  comes  higher

temperature and faster degradation rates [22-24].  Indeed, a well known technique to
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accelerate  device ageing is  to run the device at  higher temperatures  [25].   Active

cooling of high power devices is often used to achieve high power operation along

with long lifetime.  However,  active cooling increases power consumption,  device

complexity and total unit cost.  In order to achieve the long lifetimes required by the

telecommunications industry, laser structures must be optimised optically, electrically

and thermally.

In  order  to  increase  device  performance  whilst  maintaining  long lifetime,  a  good

understanding  of  the  dominant  heat  generation  mechanism  is  required.   A  cost

effective  way to  gain  such  an  understanding  is  with  the  use  of  predictive  device

models.  One of the key model parameters required for accurate simulation is optical

gain.   In  the next  chapter,  a  study of  optical  gain in  1.3m dilute  nitride  double

quantum well laser diodes is performed.
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